LimeMicro:LMS6002D Datasheet: Difference between revisions

Democratising Wireless Innovation
Jump to navigation Jump to search
(Initial page creation.)
 
(Added remaining sections of datasheet document to page.)
Line 1: Line 1:
==Summary==
==Serial Port Interface==
The Lime Microsystems LMS6002D is a multi-band, multi-standard transceiver with integrated dual digital to analogue (DAC) and analogue to digital (ADC) converters.
===Description===
The functionality of the LMS6002 transceiver is fully controlled by a set of internal registers which can be accessed through a serial port interface. Both write and read operations are supported. The serial port can be configured to run in 3 or 4 wire mode with the following pins used:


===Features===
* SEN - serial port enable, active low
* Single chip transceiver covering 0.3-3.8GHz frequency range
* SCLK - serial clock
* Digital interface to baseband with integrated 12 bit D/A and A/D converters
* SDIO - serial data in/out in 3 wire mode, serial data input in 4 wire mode
* Fully differential baseband signals
* SDO-serial data out in 4 wire mode, don’t care in 3 wire mode
* Few external components
* Programmable modulation bandwidth: 1.5, 1.75, 2.5, 2.75, 3, 3.84, 5, 5.5, 6, 7, 8.75, 10, 12, 14, 20 and 28MHz
* Supports both TDD and FDD operation modes
* Low voltage operation, 1.8V and 3.3V
* 120-pin DQFN package
* Power down option
* Serial port interface


===Applications===
Serial port key features:
* Femtocell and Picocell base stations
* 16 serial clock cycles are required to complete write operation
* Repeaters
* 16 serial clock cycles are required to complete read operation
* Broadband wireless communication devices for WCDMA/HSPA, LTE, GSM, CDMA2000, IEEE® 802.16x radios
* Multiple write/read operations are possible without toggling serial enable signal


==Functional Block Diagram==
All configuration registers are 8-bit wide. Write/read sequence consists of 8-bit instruction followed by 8-bit data to write or read. The MSB of the instruction bit stream is used as SPI command, where CMD = 1 for write and CMD = 0 for read. Next 3 bits represent the block address, since LMS6002 configuration registers are divided into eight logical blocks as shown in the [[#Memory Map|LMS6002Dr2 Memory Map]]. The remaining 4 bits of the instruction are used to address particular registers within the block as detailed in the [[#Memory Map Description|Memory Map Description]]. Use address values from the tables.
[[File:LMS6002D-Functional-Block-Diagram.png|center|550px|LMS6002D Functional Block Diagram]]


==General Description==
Write/read cycle waveforms are shown below. Note that write operation is the same for both 3-wire and 4-wire modes. Although not shown in the figures, multiple byte write/read is possible by repeating instruction/data sequence while keeping SEN low.
The LMS6002D is a fully integrated, multi-band, multi-standard RF transceiver for 3GPP (WCDMA/HSPA, LTE), 3GPP2 (CDMA2000) and 4G LTE applications, as well as for GSM pico BTS. It combines the LNA, PA driver, RX/TX mixers, RX/TX filters, synthesizers, RX gain control, and TX power control with very few external components.


The top level architecture of LMS6002D transceiver is shown in the [[#Functional Block Diagram|functional block diagram]]. Both transmitter and receiver are implemented as zero IF architectures providing up to 28MHz modulation bandwidth (equivalent to 14MHz baseband IQ bandwidth).
===Write Operation Waveform===
[[File:LMS6002D-SPI-Write-Cycle.png|center|550px|LMS6002D SPI Write Operation]]


On the transmit side, IQ DAC samples from the baseband processor are provided to the LMS6002D on a 12 bit multiplexed parallel CMOS input level bus. Analogue IQ signals are generated by on chip transmit DACs. These are fed to the TXINI and TXINQ inputs. Transmit low pass filters (TXLPF) remove the images generated by zero hold effect of the DACs. The IQ signals are then amplified (TXVGA1) and DC offset is inserted in the IQ path by LO leakage DACs in order to cancel the LO leakage. The IQ signals are then mixed with the transmit PLL (TXPLL) output to produce a modulated RF signal. This RF signal is then split and amplified by two separate variable gain amplifiers (TXVGA2) and two off chip outputs are provided as RF output.
===Read Operation Waveform, 4-Wire (Default)===
[[File:LMS6002D-SPI-Read-Cycle-4-Wire.png|center|550px|LMS6002D SPI Read Operation, 4-Wire (Default)]]


Transmitter gain control range of 56dB is provided by IF (TXVGA1, 31dB range) and RF (TXVGA2, 25 dB range) variable gain amplifiers. Both TXVGAs have 1dB gain step control.
===Read Operation Waveform, 3-Wire===
[[File:LMS6002D-SPI-Read-Cycle-4-Wire.png|center|550px|LMS6002D SPI Read Operation, 3-Wire]]


The LMS6002D provides an RF loop back option (see the [[#Functional Block Diagram|functional block diagram]]) which enables the TX RF signal to be fed back into the baseband for calibration and test purposes. The RF loop back signal is amplified by an auxiliary PA (AUXPA) in order to increase the dynamic range of the loop.
==Memory Map Description==
 
===Memory Map===
On the receive side, three separate inputs are provided each with a dedicated LNA. Each port preconditioned RF signal is first amplified by a programmable low noise amplifier (RXLNA). The RF signal is then mixed with the receive PLL (RXPLL) output to directly down convert to baseband. Large AGC steps can be implemented by an IF amplifier (RXVGA1) prior to the programmable bandwidth lowpass channel select filters (RXLPF). The received IQ signal is further amplified by a programmable gain amplifier RXVGA2. DC offset is applied at the input of RXVGA2 to prevent saturation and to preserve receive the ADC(s) dynamic range. The resulting analogue receive IQ signals are converted into the digital domain using the on chip receive ADCs and provided as an output to the baseband processor on a multiplexed 12 bit CMOS output level parallel bus. The receive clock, RX_CLK, is provided off chip at the RX_CLK_OUT pin and can be used to synchronise with the baseband digital receive data sampling clock.
{| class="wikitable"
 
! Address (7 bits) !! Description
By closing the RXOUT switch and powering down RXVGA2, the  RXOUTI and RXOUTQ pins can be used as IQ ADCs inputs.  In this configuration the ADCs can be used to measure two external signals, such as an off chip PA temperature sensor or peak detector.
|-
| x000:xxxx || Top level configuration (as in [[#Top Level Configuration (User Mode)|Top Level Configuration (User Mode)]], [[#Top Level Configuration (Test Mode)|(Test Mode)]])
|-
| x001:xxxx || TX PLL configuration (as in [[#TX/RX PLL Configuration (User Mode)|TX/RX PLL Configuration (User Mode)]], [[#TX/RX PLL Configuration (Test Mode)| (Test Mode)]])
|-
| x010:xxxx || RX PLL configuration (as in [[#TX/RX PLL Configuration (User Mode)|TX/RX PLL Configuration (User Mode)]], [[#TX/RX PLL Configuration (Test Mode)|(Test Mode)]])
|-
| x011:xxxx || TX LPF modules configuration (as in [[#TX LPF Modules Configuration (User Mode)|TX LPF Modules Configuration (User Mode)]], [[#TX LPF Modules Configuration (Test Mode)|(Test Mode)]])
|-
| x100:xxxx || TX RF modules configuration (as in [[#TX RF Modules Configuration (User Mode)|TX RF Modules Configuration (User Mode)]], [[#TX RF Modules Configuration (Test Mode)|(Test Mode)]])
|-
| x101:xxxx || RX LPF, DAC/ADC modules configuration (as in [[#RX LPF, DAC/ADC Modules Configuration (User Mode)|RX LPF, DAC/ADC Modules Configuration (User Mode)]], [[#RX LPF, DAC/ADC Modules Configuration (Test Mode)|(Test Mode)]])
|-
| x110:xxxx || RX VGA2 configuration (as in [[#RX VGA2 Configuration (User Mode)|RX VGA2 Configuration (User Mode)]], [[#RX VGA2 Configuration (Test Mode)|(Test Mode)]])
|-
| x111:xxxx || RX FE modules configuration (as in [[#RX FE Modules Configuration (User Mode)|RX FE Modules Configuration (User Mode)]], [[#RX FE Modules Configuration (Test Mode)|(Test Mode)]])
|}


Two transmitter outputs (TXOUT1, TXOUT2) and three receiver inputs (RXIN1, RXIN2, RXIN3) are provided to facilitate multi-band operation.
===Top Level Configuration (User Mode)===
 
The functionality of the LMS6002D is fully controlled by a set of internal registers which can be accessed through a serial port.
 
In order to enable full duplex operation, the LMS6002D contains two separate synthesisers (TXPLL, RXPLL) both driven from the same reference clock source PLLCLK. The PLLCLK signal is provided at the PLLCLKOUT output pin and can be used as the baseband clock.
 
Differential signalling is done in the receive and transmit analogue paths throughout the chip.
 
==Specifications==
===General Specifications===
{| class="wikitable"
{| class="wikitable"
!Parameter !! Condition/Comment !! Min !! Typ !! Max !! Unit
! Address (7 bits) !! Bits!! Description
|-
|rowspan="3"|0x00 || 7-6 || Not used
|-
| 5-0 || DC_REGVAL[5:0]: Value from DC calibration module selected by DC_ADDR.
|-
| || '''Read only.'''
|-
|rowspan="5"|0x01 || 7-5 || RCCAL_LPFCAL[2:0]: Value of the cal_core block in the LPF which calibrates the RC time constant.
|-
| 4-2 || DC_LOCK[2:0]: Lock pattern register.
* Locked when register value is not "000" nor "111".
|-
| 1 || DC_CLBR_DONE : indicates calibration status.
* 1 – Calibration in progress.
* 0 – Calibration is done.
|-
| 0 || DC_UD: Value from DC module comparator, selected by DC_ADDR
* 1 – Count Up.
* 0 – Count Down.
|-
| || '''Read only.'''
|-
|rowspan="3"|0x02 || 7-6 || Not used
|-
| 5-0 || DC_CNTVAL[5:0] : Value to load into selected (by DC_ADDR) DC calibration module.
|-
| || '''Default:''' 00011111
|-
|rowspan="6"|0x03 || 7-6 || Not used.
|-
| 5 || DC_START_CLBR: Start calibration command of the module, selected by DC_ADDR
* 1 – Start Calibration.
* 0 – Deactivate Start Calibration command. ('''Default''')
|-
| 4 || DC_LOAD: Load value from DC_CNTVAL to module, selected by DC_ADDR
* 1 – Load Value.
* 0 – Deactivate Load Value command. ('''Default''')
|-
| 3 || DC_SRESET: resets all DC Calibration modules
* 1 – Reset inactive. ('''Default''')
* 0 – Reset active.
|-
| 2-0 || DC_ADDR[2:0]: Active calibration module address.
* 000 – LPF tuning module.
* 001-111 – Not used.
|-
| || '''Default''': 00001000
|-
|rowspan="4"|0x04 || 7-4 || VER[3:0]: Chip version.
|-
| 3-0 || REV[3:0]: Chip revision.
|-
| || '''Read only.'''
|-
| || Default: 00100010
|-
|rowspan="9"|0x05 || 7 || DECODE:
* 0 – Decode control signals. ('''Default''')
* 1 – Use control signals from test mode registers.
|-
| 6 || Not used.
|-
| 5 || SRESET: DSM soft reset.
* 0 – Reset state
* 1 – inactive. ('''Default''')
|-
| 4 || EN: Top modules enable.
* 0 – Top modules powered down.
* 1 – Top modules enabled. ('''Default''')
|-
| 3 || STXEN: Soft transmit enable.
* 0 – Transmitter powered down. ('''Default''')
* 1 – Transmitter enabled.
|-
| 2 || SRXEN: Soft receive enable.
* 0 – Receiver powered down. ('''Default''')
* SRXEN=1 – Receiver enabled.
|-
| 1 || TFWMODE: Serial port mode.
* 0 – Three-wire mode.
* 1 – Four-wire mode ('''Default''')
|-
| 0 || Not used.
|-
|  || '''Default:''' 00110010
|-
|rowspan="6"|0x06 || 7-4 || Not used.
|-
| 3 || CLKSEL_LPFCAL: Select the clock for LPF tuning module.
* 0 – 40 MHz clock generated from TX PLL output.
* 1 – Use PLL reference clock. ('''Default''')
|-
| 2 || PD_CLKLPFCAL: Power down on-chip LPF tuning clock generation block.
* 0 – Powered up.
* 1 – Powered down. ('''Default''')
|-
| 1 || ENF_EN_CAL_LPFCAL: Enables the enforce mode. Passes FORCE_CODE_CAL_LPFCAL to RCCAL_LPFCAL.
* 0 – Enforce mode disabled. ('''Default''')
* 1 – Enforce mode enabled.
|-
| 0 || RST_CAL_LPFCAL: Reset signal used at the beginning of calibration cycle. Reset signal needs to be longer than 100ns.
* 0 – Normal state
* 1 – Reset state ('''Default''')
|-
|  || '''Default:''' 00001101
|-
|rowspan="4"|0x07 || 7 || EN_CAL_LPFCAL: Enable signal. If =1--> the block is enabled. Should be enabled only when the RC calibration algorithm is running.
* 0 – Block disabled ('''Default''')
* 1 – Block enabled
|-
| 6-4 || FORCE_CODE_CAL_LPFCAL[2:0]: Input code coming from software. Will be passed to the output if ENF_EN_CAL_LPFCAL=1.
* 000 ('''Default''')
|-
| 3-0 || BWC_LPFCAL[3:0]: LPF bandwidth control. (Set this code to RXLPF BWC if RXLPF and TXLPF have different cut-off frequencies).
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! code !! Bandwidth [MHz]
|-
| 0000 || 14 ('''Default''')
|-
|-
|TRX RF Frequency Range || || 0.3 || || 3.8 || GHz
| 0001 || 10
|-
|-
|Baseband Bandwidth || || 0.75 || || 14 || MHz
|0010 || 7
|-
|-
|Frequency Resolution || Using 41MHz PLL reference clock || || || 2.4 || Hz
| 0011 || 6
|-
|-
|TRX 3.3V Supply || || 3.1 || 3.3 || 3.5 || V
| 0100 || 5
|-
|-
|TRX 1.8V Supply || || 1.7 || 1.8 || 1.9 || V
| 0101 || 4.375
|-
|-
|TX Supply Current || At maximum gain || || 280 || || mA
| 0110 || 3.5
|-
|-
|RX Supply Current || At maximum gain || || 220 || || mA
|0111  || 3
|-
|-
|Digital Core Supply Voltage || || 1.7 || 1.8 || 1.9 || V
| 1000 || 2.75
|-
|-
|Digital Peripheral (IO) Supply Voltage || Can go below 3.3V nominal to support LV CMOS signalling || 1.7 || 3.3 || 3.5 || V
| 1001 || 2.5
|-
|-
|Ambient Temperature || || -40 || 25 || 85 || °C
| 1010 || 1.92
|-
|-
|Storage Temperature || || -65 || || 125 || °C
| 1011 || 1.5
|-
|-
|Maximum RF Output Power || Continuous wave || || 6 || || dBm
| 1100 || 1.375
|-
|-
|Absolute Maximum RF Input Power || No damage || 23 || || || dBm
| 1101 || 1.25
|-
|-
|PLL Reference Clock || For continuous LO frequency range || 23 || || 41 || MHz
| 1110  || 0.875
|-
|-
|PLL Phase Noise || 1MHz offset || || -125 || || dBc/Hz
| 1111 || 0.75
|}
|}
===RF Specifications===
{| class="wikitable"
! Parameter !! Condition/Comment !! Min !! Typ !! Max !! Unit
|-
|-
|TRX RF Bandwidth || || 0.3 || || 3.8 || GHz
| || '''Default:''' 00000000
|-
|rowspan="6"|0x08 || 7 || Reserved.
* 0 – '''(Default)'''
|-
| 6 || LBEN_LPFIN: BB loopback enable. If =1, TX BB loopback signal is connected to RXLPF input. If enabled, RXTIA should be disabled (powered down)
* 0 – '''(Default)'''
|-
| 5 || LBEN_VGA2IN: BB loopback enable. If =1, TX BB loopback signal is connected to RXVGA2 input. If enabled, LPF should be disabled (powered down).
* 0 – '''(Default)'''
|-
| 4 || LBEN_OPIN: BB loopback enable. If =1, TX BB loopback signal is connected to the RX output pins. If enabled, RXLPF and RXVGA2 should be disabled (powered down)
* 0 – '''(Default)'''
|-
| 3-0 || LBRFEN[3:0]: RF loop back control. When activated, LNAs should be disabled (powered down).
* 0 – RF loopback disabled '''(Default)'''
* 1 – TXMIX output connected to LNA1 path
* 2 – TXMIX output connected to LNA2 path
* 3 – TXMIX output connected to LNA3 path
* 4-15 – Reserved. Not valid for settings.
|-
|  || '''Default:''' 00000000
|-
|rowspan="10"|0x09 || 7 || RXOUTSW: RX out/ADC in high-Z switch control.
* 0 – Switch open (RX output/ADC input chip pins disconnected.) '''(Default)'''
* 1 – Switch closed. RXVGA2 should be powered off first.
|-
| 6-0 || CLK_EN[6:0]: Clock distribution control.
|-
|-
|Transmit Input Impedance || Differential, programmable || || 100 || || Ohms
| 6 || CLK_EN [6]
* 1 – PLLCLKOUT enabled. '''(Default)'''
* 0 – PLLCLKOUT disabled.
|-
|-
|Transmit Load Impedance || Differential || || 65 || || Ohms
| 5 || CLK_EN [5]
* 1 – LPF CAL clock enabled.
* 0 – LPF CAL clock disabled. '''(Default)'''
|-
|-
|rowspan="2"|Transmit Differential I and Q Input Voltages || Differential || || 250 || || mVpp
| 4 || CLK_EN [4]
* 1 – RX VGA2 DCCAL clock enabled.
* 0 – RX VGA2 DCCAL clock disabled. '''(Default)'''
|-
|-
| Common mode || || 65 || || mV
| 3 || CLK_EN [3]
* 1 – Rx LPF DCCAL clock enabled.
* 0 – Rx LPF DCCAL clock disabled. '''(Default)'''
|-
|-
|Transmit Gain Control Range || TXVGA1, TXVGA2 || || 56 || || dB
| 2 || CLK_EN [2]
* 1 – RX DSM SPI clock enabled.
* 0 – Rx DSM SPI clock disabled. '''(Default)'''
|-
|-
|Transmit Gain Control Step || || || 1 || || dB
| 1 || CLK_EN [1]
* 1 – Tx LPF SPI DCCAL clock enabled.
* 0 – Tx LPF SPI DCCAL clock disabled. '''(Default)'''
|-
|-
|TX LO Leakage || LO leakage not calibrated || || -50 || || dBc
| 0 || CLK_EN [0]
* 1 – Tx DSM SPI clock enabled.
* 0 – Tx DSM SPI clock disabled. '''(Default)'''
|-
|-
|RX LNA1 Frequency Range || Narrow band || 0.3 || || 2.8 || GHz
| || '''Default:''' 01000000
|-
|-
|RX LNA2 Frequency Range || Narrow band || 1.5 || || 3.8 || GHz
|rowspan="4"|0x0A || 7-2 || Not used.
|-
|-
|RX LNA3 Frequency Range || Broad band || 0.3 || || 3.8 || GHz
|1 || FDDTDD: Frequency/Time division duplexing selection.
* 0 – FDD mode. '''(Default)'''
* 1 – TDD mode.
|-
|-
|RX LNA1 Input Impedance || Differential ||  || 50 ||  || Ohms
| 0 || TDDMOD: TDD mode selection if FDDTDD=1.
* 0 – TDD Transmit mode. '''(Default)'''
* 1 – TDD Receive mode.
|-
|-
|RX LNA2 Input Impedance || Differential || || 50 ||  || Ohms
| || '''Default:''' 00000000
|}
 
===Top Level Configuration (Test Mode)===
{| class="wikitable"
! Address (7 bits) !! Bits !! Description
|-
|-
|RX LNA3 Input Impedance || Differential || || 200 ||  || Ohms
|rowspan="6"|0x0B || 7-5 || Not used.
|-
|-
|Receive Load Impedance || Differential ||  || 2K ||  || Ohms
| 4 || PDXCOBUF: XCO buffer power down.
* 0 – Buffer powered up. '''(Default)'''
* 1 – Buffer powered down.
|-
|-
|Receive Load Capacitance || || || 5 || || pF
| 3 || SLFBXCOBUF: XCO buffer self-biasing control.
* 0 – Self-biasing disabled.
* 1 – Self-biasing enabled. '''(Default)'''
|-
|-
|rowspan="3"|Noise Figure || LNA1 at 0.95GHz || || 3.5 || || rowspan="3"|dB
| 2 || BYPXCOBUF: XCO buffer bypass.
* 0 – Buffer active. '''(Default)'''
* 1 – Buffer bypassed.
|-
|-
|LNA2 at 1.95GHz || || 5.5 ||
| 1-0 || PD[1:0]: Power down control for top modules.
PD[1]
* 1 – PD_DCOREF_LPFCAL powered down.
* 0 – PD_DCOREF_LPFCAL powered up. '''(Default)'''
PD[0]
* 1 – RF loopback switch powered up.
* 0 – RF loopback switch powered down.'''(Default)'''
|-
|-
|LNA3 at 1.95GHz || || 10 ||  
| || '''Default:''' 00001000
|-
|-
|3rd Order Input Referred Intercept Point || LNA2 at Mid. Gain || || -1 || || dBm
|rowspan="2"|0x0E-|| 5-0 || 00000001 – v1
|-
|-
|Receive Gain Control Range || RXLNA, RXVGA1, RXVGA2 || || 61 || || dBm
| || '''Read only.'''
|-
|-
|rowspan="2"|Receive Gain Control Step || RXVGA1, not log-linear || || || 1 || rowspan="2"|dB
|rowspan="2"|0x0F || 7-0 || SPARE1[7:0]: Spare configuration register.
|-
|-
|RXVGA2 || || 3 ||  
| || '''Default:''' 00000000
|}
|}


==Gain Control==
===TX/RX PLL Configuration (User Mode)===
===TX Gain Control===
[[File:LMS6002D-TX-Gain-Control-Architecture.png|center|500px|LMS6002D TX Gain Control Architecture]]
The LMS6002D transmitter has two programmable gain stages: TXVGA1, located in the IF section; and TXVGA2, in the RF section. TXVGA1 is implemented on the I and Q branches but controlled by a single control word. TXVGA2 consists of 2 amplifiers one for each of the transmitter outputs, however only one of these output amplifiers can be active at any time.
 
Note: The TXLPF has a gain of 6dB or 0dB when bypassed.
 
{| class="wikitable"
{| class="wikitable"
!Parameter !! Condition !! Min !! Typ !! Max !! Unit
! Address (7 bits) !! Bits !! Description
|-
|rowspan="2"|Tx: 0x10, Rx: 0x20 || 7-0 || NINT[8:1]: Integer part of the divider (MSBs).*
|-
| || '''Default:''' ”01000001“'''0''', NINT=130.
|-
|rowspan="2"|Tx: 0x11, Rx: 0x21 || 7 || NINT[0]: Integer part of the divider (LSB).*
|-
| 6-0 || NFRAC[22:16]: Fractional part of the divider*
|-
| Tx: 0x12, Rx: 0x22 || 7-0 || NFRAC[15:8] *
|-
|rowspan="2"|Tx: 0x13, Rx: 0x23 || 7-0 || NFRAC[7:0] *
|-
| || '''Default:''' '''0'''”010…0”, NFRAC=0.25, f<sub>VCO</sub>=130.25*40MHz=5.21GHz.
|-
|rowspan="7"|Tx: 0x14, Rx: 0x24 || 7 || DITHEN: Dithering control.
* 0 – Disabled.
* 1 – Enabled. '''(Default)'''
|-
| 6-4 || DITHN[2:0]: How many bits to dither if DITHEN=1
* 000 – 1 bit. '''(Default)'''
* 001 – 2 bits.
* 010 – 3 bits.
* …
* 111 – 8 bits.
|-
| 3 || EN: PLL enable.
* 0 – PLL powered down.
* 1 – PLL enabled. '''(Default)'''
|-
| 2 || AUTOBYP: Delta sigma auto bypass when NFRAC = 0.
* 0 – Disabled. '''(Default)'''
* 1 – Enabled
|-
| 1 || DECODE.
* 0 – Decode power down/enable signals. '''(Default)'''
* 1 – Use power down/enable signals from test mode registers.
|-
| 0 || Reserved
* 0 – '''(Default)'''
|-
| || '''Default:''' “10001000”
|-
|rowspan="4"|Tx: 0x15, Rx: 0x25 || 7-4 || SELVCO[2:0]: VCO selection.
* 000 – All VCOs powered down.
* 100 – Low frequency VCO (vco4).
* 101 – Mid low frequency VCO (vco3). '''(Default)'''
* 110 – Mid high frequency VCO (vco2).
* 111 – High frequency VCO (vco1).
|-
| 4-2 || FRANGE[2:0]: PLL output frequency range selection.
* 000 – All dividers powered down.
* 100 – Fvco/2  (2-4GHz range). '''(Default)'''
* 101 – Fvco/4  (1-2GHz range).
* 110 – Fvco/8  (0.5-1GHz range).
* 111 – Fvco/16 (0.25-0.5GHz range).
|-
| 1-0 || SELOUT[1:0]: Select output buffer in RX PLL, not used in TX PLL.
* 00 – All output buffers powered down.
* 01 – First buffer enabled for LNA1 path. '''(Default)'''
* 10 – Second buffer enabled for LNA2 path.
* 11 – Third buffer enabled for LNA3 path.
|-
| || '''Default:''' “10110001”
|-
|rowspan="5"|Tx: 0x16, Rx: 0x26 || 7 || EN_PFD_UP: Enable PFD UP pulses.
* 0 – Disabled.
* 1 –Enabled. '''(Default)'''
|-
| 6 || OEN_TSTD_SX.
* 0 – Test signal output buffer disabled. '''(Default)'''
* 1 – Test signal output buffer enabled.
|-
| 5 || PASSEN_TSTOD_SD.
* 0 – Test signal pass disabled. '''(Default)'''
* 1 – Test signal pass enabled.
|-
| 4-0 || CHP[4:0]: Charge pump current. Binary coded, LSB = 100uA.
* 00000 – 0uA.
* 00001 – 100uA.
* ...
* 11000 – 2400uA.
* ...        – 2400uA.
|-
| || '''Default:''' “10001100”, ICHP = 1.2mA
|-
|rowspan="5"|Tx: 0x17, Rx: 0x27 || 7 || BYPVCOREG: Bypass VCO regulator.
* 0 – Not bypassed.
* 1 – Regulator bypassed. '''(Default)'''
|-
| 6 || PDVCOREG: VCO regulator power down.
* 0 – Regulator powered up.
* 1 – Regulator powered down. '''(Default)'''
|-
| 5 || FSTVCOBG: VCO regulator band gap settling time control. Shorts the resistor in band gap to speed up charging for faster response. After the initial charge up, it should be disabled.
* 1 – Resistor shorted. '''(Default)'''
* 0 – Switch open.
|-
| 4-0 || OFFUP[4:0]: Charge pump UP offset current. Binary coded, LSB = 10uA.
* 00000 – 0uA.
* 00001 – 10uA.
* ...
* 11000 – 240uA.
* ... – 240uA.
|-
| || '''Default:''' “11100000” = 0mA.
|-
|rowspan="3"|Tx: 0x18, Rx: 0x28 || 7-5 || VOVCOREG[3:1]: VCO regulator output voltage control, 3 MSBs. LSB=100mV, VOVCOREG[3:0] coded as below.
* 0000 – 1.4V, min output.
* ...
* 0101 – 1.9V. '''(Default)'''
* ...
* 1100 – 2.6V, max output.
*  1101, 1110, 1111 – not valid codes
|-
| 4-0 || OFFDOWN[4:0]: Charge pump DOWN offset current. Binary coded, LSB = 10uA.
* 00000 – 0uA.
* 00001 – 10uA.
* ...
* 11000 – 240uA.
* ... – 240uA.
|-
|-
|TXLPF Gain || 0dB gain when bypassed || 0 || || 6 || dB
| || '''Default:''' “01000000” = 0mA.
|-
|-
|TXVGA1 Gain Control Range || || || 31 ||  || dB
|rowspan="4"|Tx: 0x19, Rx: 0x29 || 7 || VOVCOREG[0]: VCO regulator output voltage control, LSB.
|-
|-
|TXVGA1 Gain Step Size || Guaranteed monotonic ||  || 1 ||  || dB
| 6 || Not used.
|-
|-
|TXVGA2 Gain Control Range || ||  || 25 ||  || dB
| 5-0 || VCOCAP[5:0]: Switch capacitance programming. Binary coded.
* 000000 – Max capacitance, min frequency.
* 010100 – '''(Default)'''
* 111111 – Min capacitance, max frequency.
|-
|-
|TXVGA2 Gain Step Size || Guaranteed monotonic ||  || 1 ||  || dB
| || '''Default:''' “10010100", VCOCAP=20
|}
|}
* Shadow registered


===RX Gain Control===
===TX/RX PLL Configuration (Test Mode)===
[[File:LMS6002D-RX-Gain-Control-Architecture.png|center|500px|LMS6002D RX Gain Control Architecture]]
The LMS6002D receiver has three gain control elements: RXLNA, RXVGA1, and RXVGA2. RXLNA gain control consists of a single 6dB step for AGC when large in co-channel blockers are present and a reduction in system NF is acceptable. The main LNAs (LNA1 and LNA2) have fine gain control via a 6 bit word which offers ±6dB control intended for frequency correction when large input bandwidths are required.
 
RXVGA1 offers 25dB of control range. A 7 bit control word is used and the response is not log-linear. Maximum step size is 1dB. RXVGA1 is intended for AGC steps needed to reduce system gain prior to the channel filters when large in band blockers are present. This gain can be under control of the baseband or fixed on calibration.
 
RXVGA2 provides the bulk of gain control for AGC if a constant RX signal level at the ADC input is required. It has 30dB gain range control in 3dB steps.
 
Note: RXLPF has a gain of 0dB when bypassed.
 
{| class="wikitable"
{| class="wikitable"
!Parameter !! Condition !! Min !! Typ !! Max !! Unit
! Address (7 bits) !! Bits !! Description
|-
|rowspan="4"|Tx: 0x1A, Rx: 0x2A || 7 || VTUNE_H ('''Read Only'''): Value from Vtune comparator.
|-
| 6 || VTUNE_L ('''Read Only'''): Value from Vtune comparator.
|-
| 5-0 || Reserved
* 000011 – '''(Default)'''
|-
| || '''Default:''' “00000011”
|-
|rowspan="6"|Tx: 0x1B, Rx: 0x2B || 7-4 || Reserved
* 0111 – '''(Default)'''
|-
| 3 || PD_VCOCOMP_SX: VCO Comparator enable.
* 0 – Enabled (powered up). '''(Default)'''
* 1 – disabled (powered down).
|-
| 2 || Reserved.
* 1 – '''(Default)'''
|-
| 1 || Reserved.
* 1 – '''(Default)'''
|-
| 0 || Reserved.
* 1 – '''(Default)'''
|-
| || '''Default:''' “01110110”, A value = 0, (N=130).
|-
|rowspan="2"|Tx: 0x1C, Rx: 0x2C || 7-0 || Reserved.
|-
| || '''Default:''' “00111000”
|-
|-
|RXLNA Gain Control Range || Single step || 0 || || 6 || dB
|rowspan="2"|Tx: 0x1D, Rx: 0x2D || 7-0 || Reserved.
|-
|-
|RXVGA1 Gain Control Range || ||  || 25 ||  || dB
| || '''Read only.'''
|-
|-
|RXVGA1 Gain Step Size || Not log-linear ||  ||  || 1  || dB
|rowspan="2"|Tx: 0x1E, Rx: 0x2E || 7-0 || Reserved.
|-
|-
|RXLPF Gain || 0dB gain when bypassed || 0 || || 6 || dB
| || '''Read only.'''
|-
|-
|RXVGA2 Gain Control Range || || || 30 ||  || dB
|rowspan="2"|Tx: 0x1F, Rx: 0x2F || 7-0 || Reserved.
|-
|-
|RXVGA2 Gain Step Size || Guaranteed monotonic ||  || 3 ||  || dB
| || '''Read only.'''
|}
|}


==Synthesisers==
===TX LPF Modules Configuration (User Mode)===
[[File:LMS6002D-PLL-Architecture.png|center|550px|LMS6002D PLL Architecture]]
The LMS6002D has two low phase noise synthesisers to enable full duplex operation.  Both synthesisers are capable of output frequencies up to 3.8GHz. Each synthesiser uses a fractional-N PLL architecture. The same reference frequency is used for both synthesisers and is flexible between 23 to 41MHz. The synthesisers produce a complex output with suitable level to drive IQ mixers in both the TX and the RX paths.
 
The LMS6002D can accept clipped sine as well as the CMOS level signals as the PLL reference clock. Both [[#DC Coupled|DC]] and [#AC Coupled|AC]] coupling are supported. Internal buffer self biasing must be enabled for AC coupling mode. PLL reference clock input can also be low voltage CMOS (2.5V or 1.8V, for example) which is implemented by lowering clock buffer supply PVDDSPI33.
 
{| class="wikitable"
{| class="wikitable"
!Parameter !! Condition !! Min !! Typ !! Max !! Unit
! Address (7 bits) !! Bits !! Description
|-
|rowspan="3"|0x30 || 7-6 || Not used.
|-
| 5-0 || DC_REGVAL[5:0]: Value from DC calibration module selected by DC_ADDR.
|-
| || '''Read only.'''
|-
|rowspan="5"|0x31 || 7-5 || Not used.
|-
| 4-2 || DC_LOCK[2:0]: Lock pattern register.
* Locked, when register value is neither "000" nor "111".
|-
| 1 || DC_CLBR_DONE: indicates calibration status.
* 1 – Calibration in progress.
* 0 – Calibration is done.
|-
| 0 || DC_UD: Value from DC module comparator, selected by DC_ADDR.
* 1 – Count Up.
* 0 – Count Down.
|-
| || '''Read only.'''
|-
|rowspan="3"|0x32 || 7-6 || Not used.
|-
| 5-0 || DC_CNTVAL[5:0]: Value to load into selected (by DC_ADDR) DC calibration module.
|-
| || '''Default:''' 00011111
|-
|rowspan="6"|0x33 || 7-6 || Not used.
|-
|-
|Frequency Range || || 0.3 || || 3.8 || GHz
| 5 || DC_START_CLBR: Start calibration command of module selected by DC_ADDR.
* 1 – Start calibration.
* 0 – Deactivate start calibration command. '''(Default)'''
|-
|-
|Reference Amplitude || At PVDDSPI33=3.3V || 0.2 || 0.8 || 3.3 || Vpp
| 4 || DC_LOAD: Load value from DC_CNTVAL to module, selected by DC_ADDR.
* 1 – Load Value.
* 0 – Deactivate Load Value command. '''(Default)'''
|-
|-
|Reference Frequency || For continuous LO frequency range || 23 || || 41 || MHz
| 3 || DC_SRESET: Resets all DC Calibration modules.
* 1 – Reset inactive. '''(Default)'''
* 0 – Reset active.
|-
|-
|Frequency Step Size || At 41MHz reference clock || || || 2.4 || Hz
| 2-0 || DC_ADDR[2:0]: Active calibration module address.
* 000 – I filter.
* 001 – Q filter.
* 010 – 111 Not used.
|-
|-
| Phase Noise || rowspan="4"|800MHz || || || || rowspan="12"|dBc/Hz
| || '''Default:''' 00001000
|-
|-
|style="text-align:center;"|10KHz offset || || -94 ||  
|rowspan="5"|0x34 || 7-6 || Not used.
|-
|-
|style="text-align:center;"|100KHz offset || || -113 ||
| 5-2 || BWC_LPF[3:0]: LPF bandwidth control.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! code !!  Bandwidth [MHz]
|-
|-
|style="text-align:center;"|1MHz offset || || -130 ||
| 0000 || 14 ('''Default''')
|-
|-
|Phase Noise || rowspan="4"|1.9GHz || || ||  
| 0001 || 10
|-
|-
|style="text-align:center;"|10KHz offset || || -89 ||  
|0010 || 7
|-
|-
|style="text-align:center;"|100KHz offset || || -95 ||  
| 0011 || 6
|-
|-
|style="text-align:center;"|1MHz offset || || -125 ||  
| 0100 || 5
|-
|-
|Phase Noise || rowspan="4"|2.6GHz || || ||
| 0101 || 4.375
|-
|-
|style="text-align:center;"|10KHz offset || || -86 ||  
| 0110 || 3.5
|-
|-
|style="text-align:center;"|100KHz offset || || -90 ||  
|0111  || 3
|-
|-
|style="text-align:center;"|1MHz offset || || -125 ||  
| 1000 || 2.75
|-
|-
|Reference Spurious Outputs || || || || -50 || dBc
| 1001 || 2.5
|-
|-
|Other Spurious Outputs || || || || -50 || dBc
| 1010 || 1.92
|-
|-
|rowspan="3"|IQ Phase Error || 800MHz || || 1 || || rowspan="3"|deg
| 1011 || 1.5
|-
|-
|1.9GHz || || 3 ||
| 1100 || 1.375
|-
|-
|2.6GHz || || 9 ||  
| 1101 || 1.25
|-
|-
|IQ Amplitude Error || || || 0.4 || || dB
| 1110  || 0.875
|-
|-
|PLL Settling Time || To 1ppm, 50KHz loop bandwidth || || 20 || || μs
| 1111 || 0.75
|}
|}
|-
| 1 || EN : LPF modules enable.
* 0 – LPF modules powered down.
* 1 – LPF modules enabled. ('''Default''')
|-
| 0 || DECODE.
* 0 – Decode control signals. ('''Default''')
* 1 – Use control signals from test mode registers.
|-
| || '''Default:''' 00000010
|-
|rowspan="4"|0x35


===DC Coupled===
DCO_DACCAL_LPF renamed, no action required.
[[File:LMS6002D-PLL-Reference-Clock-Input-Buffer-DC-Coupled.png|center|550px|LMS6002D PLL Reference Clock Input Buffer, DC Coupled]]
| 7 || Not used.
 
|-
===AC Coupled===
| 6 || BYP_EN_LPF: LPF bypass enable.
[[File:LMS6002D-PLL-Reference-Clock-Input-Buffer-AC-Coupled.png|center|550px|LMS6002D PLL Reference Clock Input Buffer, AC Coupled]]
* 1 – Bypass switches will bypass the LPF.
 
* 0 – Normal operation. ('''Default''')
==RF Ports==
|-
The LMS6002D has two transmitter outputs and three receiver inputs.
| 5-0 || DCO_DACCAL[5:0]: Resistor calibration control for the DC offset cancellation DAC.
 
* 001100 – '''(Default)'''
The transmitter output ports are optimized for a 65Ω differential load, the final stage amplifiers are open drain and require +3.3V voltage supply, see LMS6002D typical application circuit in the [[#Typical Application|typical application circuit]].
|-
 
| || '''Default:''' 00001100
The receiver inputs are all different: RXIN1 is the low frequency input and can operate in the range 0.3 – 2.8GHz; RXIN2 is the high frequency input and can operate in the range 1.5 3.8GHz. Both RXIN1 and RXIN2 require matching circuits for optimum performance. A simple match is shown in the [[#Typical Application|typical application circuit]]. RXIN3 is a broadband input covering the range 0.3 3.0GHz, it is 200Ω differential and is typically matched with a wideband transformer.
|}
 
==TX and RX Low Pass Filters==
The LMS6002D integrates highly selective low pass filters in both TX and RX paths. Filters have a programmable pass band in order to provide more flexibility on the DAC/ADC clock frequency and also to provide excellent adjacent channel rejection in the receive chain. The following LPF pass bands are supported: 14, 10, 7, 6, 5, 4.375, 3.5, 3, 2.75, 2.5, 1.92, 1.5, 1.375, 1.25, 0.875, and 0.75MHz. Filters are also tunable to compensate for process/temperature variation. The TX and RX filters are the same but controlled via SPI link independently. Measured amplitude responses are shown in [[#Amplitude Response|Amplitude Response]].
 
Assuming 40MHz DAC/ADC clock, 28MHz modulation bandwidth (equivalent to 14MHz baseband IQ bandwidth) and 28MHz channel spacing, performance of the TRX filters is summarised as below.
 
===TX Low Pass Filter Performance===
* First DAC image attenuation >= 55dB
* Second DAC image attenuation >= 70dB
 
===RX Low Pass Filter Performance===
* Alias attenuation >= 50dB
* First adjacent channel attenuation >= 45 dB
* Second adjacent channel attenuation >= 70 dB
 
===Amplitude Response===
[[File:LMS6002D-LPF-Amplitude-Response-1.png|550px|LPF Amplitude Response]] [[File:LMS6002D-LPF-Amplitude-Response-2.png|550px|LPF Amplitude Response]]
 
==Calibration and Initialisation==
There are a number of calibrations which the LMS6002D can carry out internally when instructed via the SPI. These calibrations can be initiated on power up/reset to produce optimum settings. The following auto calibration options are available:
 
* DC offset cancellation within the various blocks
* TRX LPF bandwidth tuning
 
Additionally, LMS6002D provides the blocks such as LO leakage DACs and RF loop back to further facilitate the following calibrations:
 
* LO leakage in the transmit chain
* IQ gain and phase mismatch in both transmit and receive chains
 
Note that these calibrations require the loop to be closed externally via the baseband.
 
===Recommended Initialisation Sequence===
# Apply RESET pulse (active low). This sets all the configuration registers to their default values.
# Set target LO frequency and gain for both TX and RX chains.
# LPF tuning.
## DC offset cancellation of the tuning module
## Execute LPF bandwidth tuning procedure
# TXLPF
## DC offset cancellation of I filter
## DC offset cancellation of Q filter
# RXLPF
## DC offset cancellation of I filter
## DC offset cancellation of Q filter
# RXVGA2
## DC offset cancellation of the reference generator
## DC offset cancellation of the first gain stage, I branch
## DC offset cancellation of the first gain stage, Q branch
## DC offset cancellation of the second gain stage, I branch
## DC offset cancellation of the second gain stage, Q branch
# TX LO leakage cancellation
# TX IQ gain/phase error calibration
# RX IQ gain/phase error calibration
 
Once the device is calibrated, register values can be stored and uploaded back into LMS6002D at the next power up/reset point which will shorten the initialisation time. Refer to the LMS6002D Programming and Calibration Guide for more details.
 
==Digital IQ Data Interface==
===Description===
[[File:LMS6002D-Baseband-Data-Interface.png|center|550px|LMS6002D Baseband Data Interface]]
 
The functionality of LMS6002D transceiver implements a subset of the LimeLight LMS600X-01008031 digital IQ interface with a 12 bit multiplexed transmit path and a 12 bit multiplexed receive path. TX and RX interfaces require a clock running at twice the data converters sample rate. Separate clocks can be provided for the TX and RX interface. Location of the IQ samples in the multiplexed stream is flagged by the IQ select signals which are required as an input to the transmit path and provided as an output from the receive path.
 
===Frame Sync Polarity and Interleave Modes===
[[File:LMS6002D-Frame-Sync-Polarity-Interleave-Modes.png|center|550px|LMS6002D Frame Sync Polarity and Interleave Modes]]
 
For both TX and RX interfaces IQ_SEL (frame sync) polarity and interleave mode are independently programmable via the SPI link. Here, the frame is defined as two consecutive T(R)X_CLK, i.e. one T(R)X_IQ_SEL, periods while IQ data from the same sampling point are present on the multiplexed bus.
 
===Transmitter Data Interface===
[[File:LMS6002D-TX-Data-Interface.png|550px|LMS6002D TX Data Interface]] [[File:LMS6002D-TX-IQ-Interface-Signals.png|550px|LMS6002D TX IQ Interface Signals]]
 
A more detailed functional diagram of the TX data interface is shown above alongside corresponding waveforms. The interface is a 12 bit parallel bus from the base band IC carrying multiplexed IQ data samples for the transmit DACs. The interface data rate is twice the DACs sample rate. TX_IQ_SEL flag is used to identify I and Q samples on the multiplexed bus. Note that the DACs sampling clock is not derived by dividing TX_CLK by two as indicated in [[#Frame Sync Polarity and Interleave Modes|Frame Sync Polarity and Interleave Modes]]. Instead, registered version of TX_IQ_SEL is used. Hence, for the DACs to receive sampling clock TX_IQ_SEL must be provided and toggled as in  [[#Frame Sync Polarity and Interleave Modes|Frame Sync Polarity and Interleave Modes]]. DACs sampling edge is also programmable via SPI link.


The TX digital IQ interface related pins are described as follows:
===TX LPF Modules Configuration (Test Mode)===
* TX_CLK
** TX interface data clock, positive edge sensitive (input)
* TXD[11:0] - 12 bit multiplexed IQ data bus (input)
** TX_IQ_SEL Indicates the location of I and Q data on the multiplexed bus (input)
 
Some examples of the TX interface data rates are provided below:
 
* DACs sample rate
** WCDMA 15.36 MS/s
** GSM 1.083 MS/s
* TX IQ interface data rate
** WCDMA 30.72 MS/s
** GSM 2.167 MS/s
 
===Receiver Data Interface===
[[File:LMS6002D-RX-Data-Interface.png|550px|LMS6002D RX Data Interface]] [[File:LMS6002D-RX-Data-Interface-Signals.png|550px|LMS6002D RX Data Interface Signals]]
 
A more detailed functional diagram of the RX data interface is shown above, alongside corresponding waveforms. The interface is a 12 bit parallel bus output from the LMS6002D to the base band IC carrying multiplexed IQ data samples from the receive ADCs. The interface data rate is twice the ADCs sample rate. RX_IQ_SEL flag is provided to identify I and Q samples on the multiplexed bus. The receive clock coming from the baseband is on chip divided by two before being used by the ADC’s. The ADCs sampling edge is also programmable via SPI link.
 
RX digital IQ interface related pins are described as follows:
* RX_CLK
** RX interface data clock, positive edge sensitive (input)
* RXD[11:0]
** 12 bit multiplexed IQ data bus (output)
* RX_IQ_SEL
** Indicates the location of I and Q data on the multiplexed bus (output)
 
Some examples of the RX interface data rates are provided below:
* ADCs sample rate
** WCDMA 15.36 MS/s
** GSM 1.083 MS/s
* RX IQ interface data rate
** WCDMA 30.72 MS/s
** GSM 2.167 MS/s
 
===IQ Interface Timing Parameters===
{| class="wikitable"
{| class="wikitable"
! Parameter !! Min !! Typ !! Max !! Unit
! Address (7 bits) !! Bits !! Description
|-
|rowspan="7"|0x36 || 7 || TX_DACBUF_PD: TX data DAC buffers power down.
* 0 – Enabled. '''(Default)'''
* 1 – Powered Down.
|-
| 6-4 || RCCAL_LPF[2:0]: Calibration value, coming from TRX_LPF_CAL module.
* 011 – '''(Default)'''
|-
| 3 || Not used.
|-
| 2 || PD_DCODAC_LPF: Power down for the DAC in the DC offset cancellation block.
* 1 – Powered Down.
* 0 – Enabled. '''(Default)'''
|-
| 1 || PD_DCOREF_LPF: Power down signal for the dc_ref_con3 block.
* 1 – Powered Down.
* 0 – Enabled. '''(Default)'''
|-
| 0 || PD_FIL_LPF: Power down for the filter.
* 1 – Powered Down.
* 0 – Enabled. '''(Default)'''
|-
| || '''Default:''' 00110000
|-
|rowspan="2"|0x3E || 7-0 || SPARE0[7:0]: Spare configuration register.
|-
|-
| TX Setup Time (t<sub>SETUP</sub>) || 1 || || || ns
| || '''Default:''' 00000000
|-
|-
| TX Hold Time (t<sub>HOLD</sub>) || 0.2 || || || ns
|rowspan="3"|0x3F || 7 || PD_DCOCMP_LPF: Power down DC offset comparators in DC offset cancellation block. Should be powered up only when DC offset cancellation algorithm is running.
* 1 – Powered Down.
* 0 – Enabled. '''(Default)'''
|-
|-
| RX Output Delay (t<sub>OD</sub> at 15pF Load || || || 6 || ns
| 6-0 || SPARE1[6:0]: Spare configuration register
|-
| || '''Default:''' 00000000
|}
|}


===DACs Electrical Specifications===
===RX LPF, DAC/ADC Modules Configuration (User Mode)===
(At TA = 25°C, TAVDD33 = 3.3 V, FCLK = 40 MSPS, FOUT = 4 MHz, internal references, -1 dBFS input signal unless otherwise noted)
{| class="wikitable"
{| class="wikitable"
! Parameter !! Condition !! Min !! Typ !! Max !! Unit
! Address (7 bits) !! Bits !! Description
|-
|rowspan="3"|0x50 || 7-6 || Not used.
|-
| 5-0 || DC_REGVAL[5:0]: Value from DC Calibration module, selected by DC_ADDR.
|-
| || '''Read only.'''
|-
|rowspan="5"|0x51 || 7-5 || Not used.
|-
| 4-2 || DC_LOCK[2:0]: Lock pattern register.
* Locked, when register value is neither "000" nor "111".
|-
| 1 || DC_CLBR_DONE: indicates calibration status.
* 1 – Calibration in progress.
* 0 – Calibration is done.
|-
| 0 || DC_UD: Value from DC module comparator, selected by DC_ADDR.
* 1 – Count Up.
* 0 – Count Down.
|-
| || '''Read only.'''
|-
|rowspan="3"|0x52 || 7-6 || Not used.
|-
| 5-0 || DC_CNTVAL[5:0] : Value to load into selected (by DC_ADDR) DC calibration module.
|-
| || '''Default:''' 00011111
|-
|rowspan="6"|0x53 || 7-6 || Not used.
|-
| 5 || DC_START_CLBR: Start calibration command of the module, selected by DC_ADDR.
* 1 – Start Calibration.
* 0 – Deactivate Start Calibration command. ('''Default''')
|-
| 4 || DC_LOAD: Load value from DC_CNTVAL to module, selected by DC_ADDR.
* 1 – Load Value.
* 0 – Deactivate Load Value command. ('''Default''')
|-
| 3 || DC_SRESET: resets all DC Calibration modules.
* 1 – Reset inactive. ('''Default''')
* 0 – Reset active.
|-
| 2-0 || DC_ADDR[3:0]: Active calibration module address.
* 000 – I filter. ('''Default''')
* 001 – Q filter.
* 010-111 – Not used.
|-
| || '''Default:''' 00001000
|-
|rowspan="5"|0x54 || 7-6 || Not used.
|-
| 5-2 || BWC_LPF[3:0]: LPF bandwidth control.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! code !! Bandwidth [MHz]
|-
| 0000 || 14 ('''Default''')
|-
| 0001 ||  10
|-
|0010 || 7
|-
| 0011 || 6
|-
| 0100 || 5
|-
| 0101 || 4.375
|-
| 0110 || 3.5
|-
|0111  || 3
|-
| 1000 || 2.75
|-
| 1001 || 2.5
|-
| 1010 || 1.92
|-
| 1011 || 1.5
|-
| 1100 || 1.375
|-
| 1101 || 1.25
|-
| 1110  || 0.875
|-
| 1111 || 0.75
|}
|-
| 1 || EN : LPF modules enable.
* 0 – LPF modules powered down.
* 1 – LPF modules enabled. ('''Default''')
|-
| 0 || DECODE.
* 0 – Decode control signals. ('''Default''')
* 1 – Use control signals from test mode registers.
|-
| || '''Default:''' 00000010
|-
|rowspan="4"|0x55 || 7 || Not used.
|-
| 6 || BYP_EN_LPF: LPF bypass enable.
* 1 – Bypass switches will bypass the LPF.
* 0 – Normal operation. ('''Default''')
|-
| 5-0 || DCO_DACCAL[5:0]: Resistor calibration control for the DC offset cancellation DAC.
* 001100 – '''(Default)'''
|-
| || '''Default:''' 00001100
|-
|rowspan="7"|0x56 || 7 || TX_DACBUF_PD: Not used.
|-
| 6-4 || RCCAL_LPF[2:0]: Calibration value, coming from TRX_LPF_CAL module.
* 011 – '''(Default)'''
|-
| 3 || Not used.
|-
| 2 || PD_DCODAC_LPF: Power down for the DAC in the DC offset cancellation block.
* 1 – Powered Down.
* 0 – Enabled. '''(Default)'''
|-
| 1 || PD_DCOREF_LPF: Power down signal for the dc_ref_con3 block.
* 1 – Powered Down.
* 0 – Enabled. '''(Default)'''
|-
| 0 || PD_FIL_LPF: Power down for the filter.
* 1 – Powered Down.
* 0 – Enabled. '''(Default)'''
|-
| || '''Default:''' 00110000
|-
|rowspan="6"|0x57 || 7 || EN_ADC_DAC : ADC/DAC modules enable.
* 0 – ADC/DAC modules powered down.
* 1 – ADC/DAC modules enabled. '''(Default)'''
|-
| 6 || DECODE.
* 0 – Decode ADC/DAC enable signals. '''(Default)'''
* 1 – Use ADC/DAC enable signals from MISC_CTRL[4:0] register.
|-
| 5-3 || TX_CTRL1[6:4]. DAC Internal Output Load Resistor Control Bits.
* 111 – 50 Ohms.
* 110 – 100 Ohms.
* 101 – 66 Ohms.
* 100 – 200 Ohms.
* 011 – 66 Ohms.
* 010 – 200 Ohms. '''(Default)'''
* 001 – 100 Ohms.
* 000 – Open Circuit.
|-
| 2 || TX_CTRL1[3]. DAC Reference Current Resistor.
* 1 – External. '''(Default)'''
* 0 – Internal.
|-
| 1-0 || TX_CTRL1[1:0]. DAC Full Scale Output Current Control (single-ended).
* 11 – Iout FS=5ma.
* 10 – Iout FS=2.5ma.
* 01 – Iout FS=10ma.
* 00 – Iout FS=5ma. '''(Default)'''
|-
| || '''Default:''' 10010100
|-
|rowspan="4"|0x58 || 7-6 || RX_CTRL1[7:6]. Reference bias resistor adjust.
* 11 – 15uA.
* 10 – 10uA.
* 01 – 40uA.
* 00 – 20uA. '''(Default)'''
|-
| 5-4 || RX_CTRL1[5:4]. Reference bias UP.
* 11 – 2.5X.
* 10 – 2.0X.
* 01 – 1.5X.
* 00 – 1.0X. '''(Default)'''
|-
| 3-0 || RX_CTRL1[3:0]. Reference bias DOWN.
* 1111 – Min bias.
* …
* 0000 – Max bias. '''(Default)'''
|-
| || '''Default:''' 00000000
|-
|rowspan="6"|0x59 || 7 || Not used.
|-
| 6-5 || RX_CTRL2[7:6]. Reference Gain Adjust.
* 11 – 1.25V.
* 10 – 1.00V.
* 01 – 1.75V.
* 00 – 1.50V. '''(Default)'''
|-
| 4-3 || RX_CTRL2[5:4]. Common Mode Adjust.
* 11 – 790mV
* 10 – 700mV
* 01 – 960mV
* 00 – 875mV '''(Default)'''
|-
| 2-1 || RX_CTRL2[3:2]. Reference Buffer Boost.
* 11 – 2.5X.
* 10 – 2.0X.
* 01 – 1.5X.
* 00 – 1.0X. '''(Default)'''
|-
| 0 || RX_CTRL2[0]. ADC Input Buffer Disable.
* 1 – Disabled. '''(Default)'''
* 0 – Enabled.
|-
| || '''Default:''' 00000001
|-
|rowspan="8"|0x5A || 7 || MISC_CTRL[9]. Rx Fsync Polarity, frame start.
* 1 – 1.
* 0 – 0. '''(Default)'''
|-
| 6 || MISC_CTRL[8]. Rx Interleave Mode.
* 1 – Q,I.
* 0 – I,Q. '''(Default)'''
|-
| 5 || MISC_CTRL[7]. DAC Clk Edge Polarity.
* 1 – Negative. '''(Default)'''
* 0 – Positive.
|-
| 4 || MISC_CTRL[6]. Tx Fsync Polarity, frame start.
* 1 – 1.
* 0 – 0. '''(Default)'''
|-
| 3 || MISC_CTRL[5]. Tx Interleave Mode.
* 1 – Q,I.
* 0 – I,Q. '''(Default)'''
|-
| 2 || RX_CTRL3[7]. ADC Sampling Phase Select.
* 1 – Falling edge.
* 0 – Rising edge. '''(Default)'''
|-
| 1-0 || RX_CTRL3[1:0]. Clock Non-Overlap Adjust.
* 11 – +300ps.
* 10 – +150ps.
* 01 – +450ps.
* 00 – Nominal. '''(Default)'''
|-
| || '''Default:''' 00100000
|-
|rowspan="5"|0x5B || 7-6 || RX_CTRL4[7:6] ADC bias resistor adjust.
* 11 – 15uA.
* 10 – 10uA.
* 01 – 40uA.
* 00 – 20uA. '''(Default)'''
|-
| 5-4 || RX_CTRL4[5:4]. Main bias DOWN.
* 11 – Min bias.
* 10 –
* 01 –
* 00 – Nominal. '''(Default)'''
|-
| 3-2 || RX_CTRL4[3:2]. ADC Amp1 stage1 bias UP.
* 11 – 15uA.
* 10 – 10uA.
* 01 – 40uA.
* 00 – 20uA. '''(Default)'''
|-
| 1-0 || RX_CTRL4[1:0]. ADC Amp2-4 stage1 bias UP.
* 11 – 15uA.
* 10 – 10uA.
* 01 – 40uA.
* 00 – 20uA. '''(Default)'''
|-
| || '''Default:''' 00000000
|-
|rowspan="5"|0x5C || 7-6 || RX_CTRL5[7:6] ADC Amp1 stage2 bias UP.
* 11 – 15uA.
* 10 – 10uA.
* 01 – 40uA.
* 00 – 20uA. '''(Default)'''
|-
| 5-4 || RX_CTRL5[5:4]. ADC Amp2-4 stage2 bias UP.
* 11 – 15uA.
* 10 – 10uA.
* 01 – 40uA.
* 00 – 20uA. '''(Default)'''
|-
| 3-2 || RX_CTRL5[3:2]. Quantizer  bias UP.
* 11 – 15uA.
* 10 – 10uA.
* 01 – 40uA.
* 00 – 20uA. '''(Default)'''
|-
| 1-0 || RX_CTRL5[1:0]. Input Buffer bias UP.
* 11 – 15uA.
* 10 – 10uA.
* 01 – 40uA.
* 00 – 20uA. '''(Default)'''
|-
|-
| Digital Core Supply || || 1.7 || 1.8 || 1.9 || V
| || '''Default:''' 00000000
|-
|-
| Analogue Supply || || 3.1 || 3.3 || 3.5 || V
|rowspan="3"|0x5D || 7-4 || REF_CTRL0[7:4]. Bandgap Temperature Coefficient Control.
* 0111 – Max.
* 0000 – Nominal. '''(Default)'''
* 1000 – Min.
|-
|-
| Number of Bits || Two's Complement format || || 12 || || bits
| 3-0 || REF_CTRL0[3:0]. Bandgap Gain Control.
* 0111 – Max.
* 0000 – Nominal. '''(Default)'''
* 1000 – Min.
|-
|-
| DAC Sampling Rate || || || || 40 || MHz
| || '''Default:''' 00000000
|-
|-
| Full Scale Current || Programmable || || 2.5 || || mA
|rowspan="4"|0x5E || 7-6 || REF_CTRL1[7:6]. Reference Amps bias adjust.
* 11 – 15uA.
* 10 – 10uA.
* 01 – 40uA.
* 00 – 20uA. '''(Default)'''
|-
|-
| Output Amplitude || At 100 Ohm differential load || || 250 || || mVpp diff.
| 5-4 || REF_CTRL1[5:4]. Reference Amps bias UP.
* 11 – 2.5X.
* 10 – 2.0X.
* 01 – 1.5X.
* 00 – 1.0X. '''(Default)'''
|-
|-
| SFDR || || || 60 || || dBc
| 3-0 || REF_CTRL1[3:0]. Reference Amps bias DOWN.
* 1111 – Min bias.
* …
* 0000 – Max bias. '''(Default)'''
|-
|-
| ENOB || || || 10 || || bits
| || '''Default:''' 00000000
|}
|}


===ADCs Electrical Specifications===
===RX LPF, DAC/ADC Modules Configuration (Test Mode)===
(At TA = 25°C, RAVDD18 = 1.8 V, FCLK = 40 MSPS, FOUT = 4 MHz, internal references, -1 dBFS input signal unless otherwise noted)
{| class="wikitable"
{| class="wikitable"
! Parameter !! Condition !! Min !! Typ !! Max !! Unit
! Address (7 bits) !! Bits !! Description
|-
|-
| Digital Core Supply || || 1.7 || 1.8 || 1.9 || V
|rowspan="8"|0X5F || 7 || PD_DCOCMP_LPF: Power down DC offset comparators in DC offset cancellation block. Should be powered up only when DC offset cancellation algorithm is running.
* 1 – Powered Down.  
* 0 – Enabled. '''(Default)'''
|-
|-
| Analogue Supply || || 1.7 || 1.8 || 1.9 || V
| 6-5 || SPARE00[6:5]: Spare configuration bits.
* 00 – '''(Default)'''
|-
|-
| Number of Bits || Two's Complement format || || 12 || || bits
| 4 || MISC_CTRL[4]. Enable DAC.
* 1 – Enable. '''(Default)'''
* 0 – Off.
|-
|-
| ADC Sampling Rate || || || || 40 || MHz
| 3 || MISC_CTRL[3]. Enable ADC1 (I Channel).
* 1 – Enable. '''(Default)'''
* 0 – Off.
|-
|-
| Input Amplitude || Differential || || 1 || 1.8 || Vpp
| 2 || MISC_CTRL[2]. Enable ADC2 (Q Channel).
* 1 – Enable. '''(Default)'''
* 0 – Off.
|-
|-
| Input Common Mode Voltage || Input buffer off || || 0.9 || || V
| 1 || MISC_CTRL[1]. Enable ADC reference.
* 1 – Enable. '''(Default)'''
* 0 – Off.
|-
|-
| Input Impedance || || || 2 || || kOhm
| 0 || MISC_CTRL[0]. Enable master reference.
* 1 – Enable. '''(Default)'''
* 0 – Off.
|-
|-
| ENOB || || || 10 || || bits
| || '''Default:''' 00011111
|}
|}


===Digital IQ Interface IO Buffers Specifications===
===TX RF Modules Configuration (User Mode)===
{| class="wikitable"
{| class="wikitable"
! Parameter !! Condition !! Min !! Typ !! Max !! Unit
! Address (7 bits) !! Bits !! Description
|-
|rowspan="3"|0x40 || 7-2 || Not used.
|-
| 1 || EN : TXRF modules enable
* 0 – TXRF modules powered down.
* 1 – TXRF modules enabled. '''(Default)'''
|-
| 0 || DECODE:
* 0 – Decode control signals. ('''Default''')
* 1 – Use control signals from test mode registers.
|-
|rowspan="3"|0x41 || 7-5 || Not used.
|-
| 4-0 || VGA1GAIN[4:0]: TXVGA1 gain, log-linear control. LSB=1dB, encoded as shown below.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! Code !! Gain [dB]
|-
| 00000 || -35
|-
| 00001 || -34
|-
| … ||
|-
| 10101 || -14 ('''Default''')
|-
| … ||
|-
| 11110 || -5
|-
| 11111 || -4
|}
|-
| || '''Default:''' 00010101
|-
|rowspan="2"|0x42 || 7-0 || VGA1DC_I[7:0]: TXVGA1 DC shift control, LO leakage cancellation. LSB=0.0625mV, encoded as shown below.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! Code !! DC Shift [mV]
|-
| 00000000 || -16
|-
| … ||
|-
|01111111 || -0.0625
|-
| 10000000 || 0 ('''Default''')
|-
| 10000001 || 0.0625
|-
| …
|-
| 11111111 || 15.9375
|}
|-
| || '''Default:''' 10000000
|-
|rowspan="2"|0x43 || 7-0 || VGA1DC_Q[7:0]: TXVGA1 DC shift control, LO leakage cancellation LSB=0.0625mV, encoded as shown below.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! Code !! DC Shift [mV]
|-
| 00000000 || -16
|-
| … ||
|-
|01111111 || -0.0625
|-
| 10000000 || 0 ('''Default''')
|-
| 10000001 || 0.0625
|-
| …
|-
| 11111111 || 15.9375
|}
|-
| || '''Default:''' 10000000
|-
|rowspan="5"|0x44 || 7-5 || Not used.
|-
| 4-3 || PA_EN[2:0]: VGA2 power amplifier (TX output) selection.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! PA_EN{2:1] !! PA1 !! PA2
|-
| 00 || OFF || OFF
|-
| 01 || ON || OFF ('''Default''')
|-
| 10 || OFF || ON
|-
| 11 || OFF || OFF
|}
|-
| 2 || PA_EN[2]: AUXPA, auxiliary (RF loopack) PA power down.
* 0 – Powered up. ('''Default''')
* 1 – Powered down.
|-
| 1-0 || Not used.
|-
| || '''Default:''' 00001011
|-
|rowspan="3"|0x45 || 7-3 || VGA2GAIN[4:0]: TXVGA2 gain control, log-linear control. LSB=1dB, encoded as shown below.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! Code !! Gain [dB]
|-
| 00000 || 0 '''(Default)'''
|-
| 00001 || 1
|-
| 11001 || 25 ...
|-
| 11111 || 25
|}
|-
| 2-0 || ENVD[2:0]: Controls envelop/peak detector analogue MUX.
* ENVD[2]: Selects the signal for AC coupling, MUX provides:
** 0 – Reference DC generated inside the selected detector. '''(Default)'''
** 1 – Average of the selected detector output.
* ENVD[1:0]: Detector select, MUX provides
** 00 – AUXPA envelop detector output '''(Default)'''
** 01 – AUXPA peak detector output.
** 10 – PA1 envelop detector output.
** 11 – PA2 envelop detector output.
|-
| || '''Default:''' 00000000
|-
|rowspan="5"|0x46 || 7-4 || PKDBW[3:0]: Controls the bandwidth of the envelop and peak detectors.
* 0000 – Minimum bandwidth, envelop ~1MHz, peak 30kHz. '''(Default)'''
* 1111 – Maximum bandwidth, envelop ~15MHz, peak ~300KHz.
|-
| 3-2 || LOOPBBEN[1:0]: Base band loopback switches control.
* 00 – Switch open. '''(Default)'''
* 11 – Switch closed.
|-
| 1 || FST_PKDET: Shorts the resistor in the envelop/peak detector to speed up charging for faster response. After the initial charge up, it should be disabled to achieve a LPF function.
* 0 – Switch open, LPF function in effect. '''(Default)'''
* 1 – Resistor shorted (no LPF function).
|-
| 0 || FST_TXHFBIAS: Bias stage of high frequency TX part has large resistors to filter the noise. However, they create large settling time. This switch can be used to short those resistors during the initialization and then it may be needed to open it to filter the noise, in case the noise is too high.
* 0 – Switch open (noise filtering functional). '''(Default)'''
* 1 – Resistors shorted (short settling - no noise filtering).
|-
| || '''Default:''' 00000000
|-
|rowspan="3"|0x47 || 7-4 || ICT_TXLOBUF[3:0]: Controls the bias current of the LO buffer. Higher current will increase the linearity. LSB=5/6mA.
* 0000 – Minimum current.
* 0110 – TXMIX takes 5mA for buffer. '''(Default)'''
* 1111 – Maximum current.
|-
| 3-0 || VBCAS_TXDRV[3:0]: The linearity of PAs depends on the bias at the base of the cascode NPNs in the PA cells. Increasing the VBCAS will lower the base of the cascode NPN.
* 0000 – Maximum base voltage. '''(Default)'''
* 1111 – Minimum base voltage.
|-
|-
| Supply Voltage (PVDD) || Can go below 3.3V nominal to support LVCMOS signalling || 1.7 || 3.3 || 3.5 || V
| || '''Default:''' 01100000
|-
|-
| Input High (V<sub>IH</sub>) || || PVDD-0.8 || || || V
|rowspan="3"|0x48 || 7-5 || Not used.
|-
|-
| Input Low (V<sub>IL</sub>) || || || || 0.8 || V
| 4-0 || ICT_TXMIX[4:0]: Controls the bias current of the mixer. Higher current will increase the linearity. LSB=1mA.
* 00000 – 0mA.
* 01100 – TXMIX takes 12mA for each cell. '''(Default)'''
* 11111 – 31mA.
|-
|-
| Output High (V<sub>OH</sub>) || || PVDD-0.4 || || || V
| || Default: 00001100
|-
|-
| Output Low (V<sub>OL</sub>) || || || || 0.4 || V
|rowspan="3"|0x49 || 7-5 || Not used.
|-
|-
| Input Pad Capacitance (C<sub>IN</sub>) || || || || 3.5 || pF
| 4-0 || ICT_TXDRV[4:0]: Controls the bias current of the PAs. Higher current will increase the linearity. LSB=1mA.
* 00000 – 0mA.
* 01100 – PAs take 12mA for each cell. '''(Default)'''
* 11111 – 31mA.
|-
|-
| Output Drive Current<sup>1</sup> || || || || 8 || mA
| || Default: 00001100
|}
|}
<sup>1</sup> Maximum peak current that flows when the output digital lines change state and begin charging the load capacitance.
===Implementing Low Voltage Digital IQ Interface===
[[File:LMS6002D-Digital-IQ-Interface-Supplies.png|center|550px|LMS6002D Digital IQ Interface Supplies]]
Digital IO buffers in LMS6002D are supplied using four pins (PVDDAD33A - PVDDAD33D). All these pins must be supplied by the same supply PVDD. There is one additional supply pin (PVDDVGG) dedicated for ESD protection diodes supply. PVDDVGG must be supplied by +3.3V. However, PVDD can go below 3.3V to implement low voltage signaling. For example, if PVDD=2.5V then all data lines in the above figure are set to 2.5V CMOS IOs. Having PVDDVGG=3.3V sets all inputs to be 3.3V tolerant. Minimum PVDD is 1.8V.
==Serial Port Interface==
===Description===
The functionality of LMS6002D transceiver is fully controlled by a set of internal registers which can be accessed through a serial port interface. Both write and read SPI operations are supported. The serial port can be configured to run in 3 or 4 wire mode with the following pins used:
* SEN
** serial port enable, active low
* SCLK
** serial clock, positive edge sensitive
* SDIO
** serial data in/out in 3 wire mode
**  serial data input in 4 wire mode
* SDO
** serial data out in 4 wire mode
** don’t care in 3 wire mode
Serial port key features:
* 16 SPI clock cycles are required to complete write operation.
* 16 SPI clock cycles are required to complete read operation.
* Multiple write/read operations are possible without toggling serial port enable signal.
All configuration registers are 8-bit wide. Write/read sequence consists of 8-bit instruction followed by 8-bit data to write or read. MSB of the instruction bit stream is used as SPI command where CMD=1 for write and CMD=0 for read. Remaining 7 bits of the instruction represent register address.
The write/read cycle waveforms are reproduced below. Note that the write operation is the same for both 3-wire and 4-wire modes. Although not shown in the figures, multiple byte write/read is possible by repeating the instruction/data sequence while keeping SEN low.
===Write Operation Waveform===
[[File:LMS6002D-SPI-Write-Cycle.png|center|550px|LMS6002D SPI Write Operation]]
===Read Operation Waveform, 4-Wire (Default)===
[[File:LMS6002D-SPI-Read-Cycle-4-Wire.png|center|550px|LMS6002D SPI Read Operation, 4-Wire (Default)]]
===Read Operation Waveform, 3-Wire===
[[File:LMS6002D-SPI-Read-Cycle-4-Wire.png|center|550px|LMS6002D SPI Read Operation, 3-Wire]]
===SPI Memory Map===
The LMS6002D configuration registers are divided into eight logical blocks. 3 MSBs of the available 7-bit address are used as block address while the remaining 4 bits are used to address particular registers within the block.
Integer and fractional part of the PLL divider are stored in four bytes of configuration memory. To change their values, four write cycles are required. Hence, the controlled PLL should see new NINT and NFRAC when all four bytes are updated, otherwise it will generate unpredicted and wrong LO frequency while being configured. Such parameters are provided through a shadow register. Shadow register outputs new values only when SEN is high, i.e. there is no access to configuration memory. For that reason, DSM (PLL) SPI synchronization clock, derived from the PLL reference, must be enabled while writing to or reading from the PLL configuration registers and should last at least two cycles more after SEN goes high.


===TX RF Modules Configuration (Test Mode)===
{| class="wikitable"
{| class="wikitable"
! Address (7 bits) !! Description
! Address (7 bits) !! Bits !! Description
|-
|rowspan="7"|0x4A || 7-5 || Not used.
|-
| 4 || PW_VGA1_I: VGA1, I channel power control.
* 0 – Powered down.
* 1 – Powered up. '''(Default)'''
|-
| 3 || PW_VGA1_Q: VGA1, Q channel power control.
* 0 – Powered down.
* 1 – Powered up. '''(Default)'''
|-
| 2 || PD_TXDRV: Power down for PAs and AUXPA.
* 0 – PA1, PA2 and AUXPA can be separately controlled. '''(Default)'''
* 1 – PA1, PA2 and AUXPA all disabled
|-
| 1 || PD_TXLOBUF: Power down for TXLOBUF.
* 0 –  Powered up. '''(Default)'''
* 1 – Powered down.
|-
| 0 || PD_TXMIX: Power down for TXMIX.
* 0 –  Powered up. '''(Default)'''
* 1 – Powered down.
|-
| || '''Default:''' 00011000
|-
|rowspan="2"|0x4B || 7-0 || VGA1GAINT[7:0]: TXVGA1 gain control, raw access. LSB=1dB, encoded as shown below.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! Code !! Gain [dB]
|-
| 00000 || -35
|-
| 00001 || -34
|-
| … ||
|-
| 10101 || -14 '''(Default)'''
|-
| … ||
|-
| 11110 || -5
|-
| 11111 || -4
|}
|-
|-
| 000:xxxx || Top level configuration
| || '''Default:''' 01010000
|-
|-
| 001:xxxx || TX PLL
|rowspan="2"|0x4C || 7-0 || G_TXVGA2[8:1]: Controls the gain of PA1, PA2 and AUXPA, raw access.
* For PA1, PA2: <math>\mathrm{Gain} = 20 * \log 10 \left( 0.038 * \mathit{G\_TXVGA2[8:0]} \right)</math>.
* For AUXPA: Only 4 LSBs are used, max gain ~22dB.
|-
|-
| 010:xxxx || RX PLL
| || '''Default:''' 00000000, 0dB gain.
|-
|-
| 011:xxxx || TX LPF
|rowspan="3"|0x4D || 7 || PD_PKDET: Power down for envelop/peak detectors.
* 0 – Powered up. '''(Default)'''
* 1 – Powered down.
|-
|-
| 100:xxxx || TX RF
| 6-0 || SPARE0[6:0]: Spare configuration register.
|-
|-
| 101:xxxx || RX LPF, DACs and ADCs
| || '''Default:''' 00000000
|-
|-
| 110:xxxx || RX VGA2
|rowspan="2"|0x4F || 7-0 || SPARE1[7:0]: Spare configuration register.
|-
|-
| 111:xxxx || RX RF
| || Default: 00000000
|}
|}


===Implementing Low Voltage SPI===
===RX VGA2 Configuration (User Mode)===
[[File:LMS6002D-SPI-Supplies.png|center|550px|LMS6002D SPI Supplies]]
Digital IO buffers and ESD protection diodes in the SPI region are all supplied from a single pin PVDDSPI33. PVDDSPI33 can go below 3.3V to implement low voltage signaling. For example, if PVDDSPI33=2.5V then all data lines in the above figure, including PLL reference clock input, are set to 2.5V CMOS IOs. There is no dedicated ESD protection diodes supply here so when PVDDSPI33 is less than 3.3V, inputs will not be 3.3V tolerant. Minimum PVDDSPI33 is 1.8V.
 
==Package Outline and Pin Description==
[[File:LMS6002D-DQFN120-Package-Top-View.png|center|550px|LMS6002D DQFN120 Package, Top View]]
{| class="wikitable"
{| class="wikitable"
! Pin No. !! Pin Name !! Type !! Description !! Note
! Address (7 bits) !! Bits !! Description
|-
|rowspan="3"|0x60 || 7-6 || Not used.
|-
| 5-0 || DC_REGVAL[5:0]: Value from DC Calibration module selected by DC_ADDR.
|-
| || '''Read Only.'''
|-
|rowspan="5"|0x61 || 7-5 || Not used.
|-
| 4-2 || DC_LOCK[2:0]: Lock pattern register.
* Locked when register value is not "000" nor "111".
|-
| 1 || DC_CLBR_DONE : indicates calibration status.
* 1 – Calibration in progress.
* 0 – Calibration is done.
|-
| 0 || DC_UD: Value from DC module comparator, selected by DC_ADDR
* 1 – Count Up.
* 0 – Count Down.
|-
| || '''Read only.'''
|-
|rowspan="3"|0x62 || 7-6 || Not used
|-
| 5-0 || DC_CNTVAL[5:0] : Value to load into selected (by DC_ADDR) DC calibration module.
|-
| || '''Default:''' 00011111
|-
|rowspan="6"|0x63 || 7-6 || Not used.
|-
| 5 || DC_START_CLBR: Start calibration command of the module, selected by DC_ADDR.
* 1 – Start Calibration.
* 0 – Deactivate Start Calibration command. ('''Default''')
|-
| 4 || DC_LOAD: Load value from DC_CNTVAL to module, selected by DC_ADDR.
* 1 – Load Value.
* 0 – Deactivate Load Value command. ('''Default''')
|-
| 3 || DC_SRESET: resets all DC Calibration modules.
* 1 – Reset inactive. ('''Default''')
* 0 – Reset active.
|-
| 2-0 || DC_ADDR[2:0]: Active calibration module address.
* 000 – DC reference module.
* 001 – First gain stage (VGA2A), I channel.
* 010 – First gain stage (VGA2A), Q channel.
* 011 – Second gain stage (VGA2B), I channel.
* 100 – Second gain stage (VGA2B), Q channel.
* 101-111 – Not used.
|-
| || '''Default''': 00001000
|-
|rowspan="5"|0x64 || 7-6 || Not used.
|-
| 5-2 || VCM[3:0]: RXVGA2 output common mode voltage control. VCM[3] – sign, VCM[2:0] – magnitude, LSB=40mV.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! Code !! Voltage [V]
|-
| 0000 || 1.18
|-
| 0001 || 1.14
|-
| 0010 || 1.10
|-
| 0011 || 1.06
|-
| 0100 || 1.02
|-
| 0101 || 0.98
|-
| 0110 || 0.94
|-
| 0111 ||0.90 ('''Default''')
|-
| 1000 || 0.62
|-
| 1001 || 0.66
|-
| 1010 || 0.70
|-
| 1011 || 0.74
|-
|-
| 1 || PVDDAD33A || pads supply || ADCs/DACs IOs supply (3.3V) || Can be lowered down to 1.8V to support LV signalling
| 1100 || 0.78
|-
|-
| 2 || RXD11 || out cmos || ADCs digital output, bit 11 (MSB) || Two's complement
| 1101 || 0.82
|-
|-
| 3 || RXD10 || out cmos || ADCs digital output, bit 10 ||  
| 1110 || 0.86
|}
|-
|-
| 4 || RXD9 || out cmos || ADCs digital output, bit 9 ||  
| 1 || EN :RXVGA2 modules enable.
* 0 – RXVGA2 modules powered down.
* 1 – RXVGA2 modules enabled. ('''Default''')
|-
|-
| 5 || RXD8 || out cmos || ADCs digital output, bit 8 ||  
| 0 || DECODE:
* 0 – Decode control signals. ('''Default''')
* 1 – Use control signals from test mode registers.
|-
|-
| 6 || RXD7 || out cmos || ADCs digital output, bit 7 ||  
| || '''Default:''' 00011110
|-
|-
| 7 || PVDDVGG || esd supply || ADCs/DACs IOs ESD supply (3.3V) ||  
|rowspan="3"|0x65 || 7-5 || Not used.
|-
|-
| 8 || RXD5 || out cmos || ADCs digital output, bit 5 ||  
| 4-0 || VGA2GAIN[4:0]: RXVGA2 gain control. LSB=3dB, encoded as shown below.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! Code !! Gain [dB]
|-
|-
| 9 || RXD6 || out cmos || ADCs digital output, bit 6 ||  
| 00000 || 0
|-
|-
| 10 || RXD3 || out cmos || ADCs digital output, bit 3 ||  
| 00001 || 3 ('''Default''')
|-
|-
| 11 || RXD4 || out cmos || ADCs digital output, bit 4 ||  
| ||  
|-
|-
| 12 || PVDDAD33B || pads supply || ADCs/DACs IOs supply (3.3V) || Can be lowered down to 1.8V to support LV signalling
| 01001 || 27
|-
| 01010 || 30
|-
| … ||
|-
| 10100 || 60
|}
Not recommended to be used above 30dB.
|-
| || '''Default:''' 00000001
|}
 
===RX VGA2 Configuration (Test Mode)===
{| class="wikitable"
! Address (7 bits) !! Bits !! Description
|-
|-
| 13 || RXD2 || out cmos || ADCs digital output, bit 2 ||  
|rowspan="9"|0x66 || || PD[9:0]: Power down different modules.
|-
|-
| 14 || RXD1 || out cmos || ADCs digital output, bit 1 ||  
| 7-6 || Not used.
|-
|-
| 15 || RXD0 || out cmos || ADCs digital output, bit 0 (LSB) ||  
| 5 || PD[9] - DC current regulator.
* 1 – Powered down.
* 0 – Powered up. ('''Default''')
|-
|-
| 16 || RX_IQ_SEL || out cmos || RX digital interface IQ flag ||  
| 4 || PD[8] - DC calibration DAC for VGA2B.
* 1 – Powered down.
* 0 – Powered up. ('''Default''')
|-
|-
| 17 || RX_CLK || in cmos || RX digital interface clock ||  
| 3 || Not used.
|-
|-
| 18 || PVDDAD33C || pads supply || ADCs/DACs IOs supply (3.3V) || Can be lowered down to 1.8V to support LV signalling
| 2 || PD[6] - DC calibration DAC for VGA2A.
* 1 – Powered down.
* 0 – Powered up. ('''Default''')
|-
|-
| 19 || TX_CLK || in cmos || TX digital interface clock ||  
| 1 || Not used.
|-
|-
| 20 || TX_IQ_SEL || in cmos || TX digital interface IQ flag ||  
| 0 || PD[4] - Band gap.
* 1 – Powered down.
* 0 – Powered up. ('''Default''')
|-
|-
| 21 || TXD0 || in cmos || DACs digital input, bit 0 (LSB) ||  
| || '''Default:''' 00000000
|-
|-
| 22 || TXD1 || in cmos || DACs digital input, bit 1 ||  
|rowspan="6"|0x67 || 7-4 || Not used.
|-
|-
| 23 || TXD2 || in cmos || DACs digital input, bit 2 ||  
| 3 || PD[3] – Output buffer in both RXVGAs.
* 1 – Powered down.
* 0 – Powered up. ('''Default''')
|-
|-
| 24 || TXD3 || in cmos || DACs digital input, bit 3 ||  
| 2 || PD[2] - RXVGA2B.
* 1 – Powered down.
* 0 – Powered up. ('''Default''')
|-
|-
| 25 || TXD4 || in cmos || DACs digital input, bit 4 ||  
| 1 || PD[1] - RXVGA2A.
* 1 – Powered down.
* 0 – Powered up. ('''Default''')
|-
|-
| 26 || TXD5 || in cmos || DACs digital input, bit 5 ||  
| 0 || PD[0] - Current reference.
* 1 – Powered down.
* 0 – Powered up. ('''Default''')
|-
|-
| 27 || TXD6 || in cmos || DACs digital input, bit 6 ||  
| || '''Default:''' 00000000
|-
|-
| 28 || TXD7 || in cmos || DACs digital input, bit 7 ||  
|rowspan="3"|0x68 || 7-4 || VGA2GAINB: Controls the gain of second VGA2 stage (VGA2B). LSB=3dB, encoded as shown below.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! Code !! Gain [dB]
|-
|-
| 29 || TXD8 || in cmos || DACs digital input, bit 8 ||  
| 0000 || 0 ('''Default''')
|-
|-
| 30 || TXD9 || in cmos || DACs digital input, bit 9 ||  
| 0001 || 3
|-
|-
| 31 || TXD10 || in cmos || DACs digital input, bit 10 ||  
| ||  
|-
|-
| 32 || TXD11 || in cmos || DACs digital input, bit 11 (MSB) || Two's complement
| 1001 || 27
|-
|-
| 33 || RDVDD18 || digital supply || ADCs digital supply (1.8V) ||  
| 1010 || 30
|}
|-
|-
| 34 || PVDDAD33D || pads supply || ADCs/DACs pads supply (3.3V) || Can be lowered down to 1.8V to support LV signalling
| 3-0 || VGA2GAINA: Controls the gain of first VGA2 stage (VGA2A). LSB=3dB, encoded as shown below.
{| class="wikitable" style="margin-left: 50px; margin-left: right;"
! Code !! Gain [dB]
|-
|-
| 35 || RAVDD18 || analogue supply || ADCs analogue supply (1.8V) ||  
| 0000 || 0
|-
|-
| 36 || TDVDD18 || digital supply || DACs digital supply (1.8V) ||  
| 0001 || 3 ('''Default''')
|-
|-
| 37 || TAVDD33 || analogue supply || DACs analogue supply (3.3V) ||  
| ||  
|-
|-
| 38 || VREFAD || in/out || External capacitor for ADCs/DACs (>100nF) ||  
| 1001 || 27
|-
|-
| 39 || XRESAD || in/out || External resistor for ADCs/DACs ||  
| 1010 || 30
|}
|-
|-
| 40 || RX_CLK_OUT || out cmos || Buffered RX_CLK (ADCs) clock, CMOS level || Can be used to align RXD[11:0] sampling clock in BB.
| || '''Default:''' 00000001
|-
|-
| 41 || PLLCLKOUT || out cmos || Buffered PLLCLK (PLL reference) clock, CMOS level || Can be used as BB clock.
|rowspan="4"|0x6E || 7 || PD[7] - DC calibration comparator for VGA2B.
* 1 – Powered down.
* 0 – Powered up. ('''Default''')
|-
|-
| 42 || ATP || out || Analogue test point ||  
| 6 || PD[6] - DC calibration comparator for VGA2A.
* 1 – Powered down.
* 0 – Powered up. ('''Default''')
|-
|-
| 43 || TXVCCLPF33 || analogue supply || TXLPF supply (3.3V) ||  
| 5-0 || SPARE0[5:0]: Spare configuration register.
|-
|-
| 44 || TXOUT2N || out || TX output 2, negative ||  
| || '''Default:''' 00000000
|-
|-
| 45 || TXVCCMIX33 || analogue supply || TXMIX supply (3.3V) ||  
|rowspan="2"|0x6F || 7-0 || SPARE1[7:0]: Spare configuration register.
|-
|-
| 46 || TXOUT2P || out || TX output 2, positive ||  
| || '''Default:''' 00000000
|}
 
===RX FE Modules Configuration (User Mode)===
{| class="wikitable"
! Address (7 bits) !! Bits !! Description
|-
|-
| 47 || TXPVDD33 || esd supply || TX pads ESD supply (3.3V) ||  
|rowspan="4"|0x70 || 7-2 || Not used.
|-
|-
| 48 || TXOUT1P || out || TX output 1, positive ||  
| 1 || DECODE.
* 0 – Decode control signals. ('''Default''')
* 1 – Use control signals from test mode registers.
|-
|-
| 49 || TXVCCDRV33 || analogue supply || TXVGA2 supply (3.3V) ||  
| 0 || EN: RXFE modules enable.
* 0 – Top modules powered down
* 1 – Top modules enabled ('''Default''')
|-
|-
| 50 || TXOUT1N || out || TX output 1, negative ||  
| || '''Default:''' 00000001
|-
|-
| 51 || TXININ || in/out || TXDAC output / TXLPF input ||  
|rowspan="3"|0x71 || 7 || IN1SEL_MIX_RXFE: Selects the input to the mixer.
* 1 – Input 1 is selected, shorted on-chip to LNA internal output. ('''Default''')
* 0 – Input 2 is selected, connected to pads.
|-
|-
| 52 || TXINIP || in/out || TXDAC output / TXLPF input ||  
| 6-0 || DCOFF_I_RXFE[6:0]: DC offset cancellation, I channel.
* Code is Sign(&lt;6&gt;)-Magnitude(&lt;5:0&gt;), signed magnitude format.
* 0000000 – ('''Default''')
|-
|-
| 53 || UNUSED ||  ||  || Connect to ground
| || '''Default:''' 10000000
|-
|-
| 54 || TXINQP || in/out || TXDAC output / TXLPF input ||  
|rowspan="3"|0x72 || 7 || INLOAD_LNA_RXFE: To select the internal load for the LNA.
* 1 – Internal load is active. ('''Default''')
* 0 – Internal node is disabled.
|-
|-
| 55 || UNUSED ||  ||  || Connect to ground
| 6-0 || DCOFF_Q_RXFE[6:0]: DC offset cancellation, Q channel.
* Code is Sign(&lt;6&gt;)-Magnitude(&lt;5:0&gt;), signed magnitude format.
* 0000000 – ('''Default''')
|-
|-
| 56 || TXINQN || in/out || TXDAC output / TXLPF input ||  
| || '''Default:''' 10000000
|-
|-
| 57 || TXVTUNE || in/out || TXPLL loop filter output ||  
|rowspan="3"|0x73 || 7 || XLOAD_LNA_RXFE: To select the externa load for the LNA.
* 1 – External load is active.
* 0 – External node is disabled. ('''Default''')
|-
|-
| 58 || TXPVDDPLL33A || esd supply || TXPLL pads ESD supply (3.3V) ||  
| 6-0 || IP2TRIM_I_RXFE[6:0]: IP2 cancellation, I channel.
* Code is Sign(&lt;6&gt;)-Magnitude(&lt;5:0&gt;), signed magnitude format.
* 0000000 – ('''Default''')
|-
|-
| 59 || TXVCCVCO33 || analogue supply || TXPLL 3.3V supply (3.3V) ||  
| || '''Default:''' 00000000
|-
|-
| 60 || TXVDDVCO18 || analogue supply || TXPLL VCO supply (1.8V) ||
|rowspan="4"|0x75 || 7-6 || G_LNA_RXFE[1:0]: LNA gain mode control.
* 11 – Max gain (all LNAs). ('''Default''')
* 10 – Mid gain (all LNAs).
* 01 – LNA bypassed (LNA1 and LNA2).
* 00 – Max gain (LNA3).
|-
|-
| 61 || TXVCCPLL18 || digital supply || TX PLL modules 1.8V supply (1.8V) ||  
| 5-4 || LNASEL_RXFE[1:0]: Selects the active LNA.
* 00 – All LNAs disabled.
* 01 – LNA1 active. ('''Default''')
* 10 – LNA2 active.
* 11 – LNA3 active.
|-
|-
| 62 || TXPVDDPLL33B || esd supply || TX PLL pads ESD supply (3.3V) ||  
| 3-0 || CBE_LNA_RXFE[3:0]: Controls the capacitance parallel to the BE of the input NPN transistors. To be used at lower frequencies for easier matching. For LNA1 and LNA2 only.
* 0000 – ('''Default''')
|-
|-
| 63 || TXVCCCHP33 || analogue supply || TX PLL charge pump supply (3.3V) ||  
| || '''Default:''' 11010000
|-
|-
| 64 || TXCPOUT || in/out || Transmit PLL loop filter input ||  
|rowspan="3"|0x76 || 7 || Not used.
|-
|-
| 65 || TSTD_out1 || out cmos || TX and RX PLLs digital test point ||  
| 6-0 || RFB_TIA_RXFE[6:0]: Feedback resistor control of the TIA (RXVGA1) to set the mixer gain.
* If = 120  --> mixer gain = 30dB ('''Default''')
* If = 102 --> mixer gain = 19dB
* If = 2 --> mixer gain = 5dB
|-
|-
| 66 || TXEN || in cmos || Transmitter enable, active high ||  
| || '''Default:''' 01111000
|-
|-
| 67 || SEN || in cmos || Serial port enable, active low ||  
|rowspan="3"|0x77 || 7 || Not used.
|-
|-
| 68 || SDO || out cmos || Serial port data out || High Z when SEN=1
| 6-0 || CFB_TIA_RXFE[6:0]: Feedback capacitor for the TIA (RXVGA1) to limit the BW.
* If = 0, min cap --> BW~45MHz for gain of 30dB. ('''Default''')
* If = 19 --> BW=2.5MHz for MixGain=30dB and at TT.
This cap is supposed to be set according to the RC time constant to have almost constant BW over the corners for optimum CDMA performance. Software will control it using the information from the LPF calibration circuit.
|-
|-
| 69 || SDIO || in/out cmos || Serial port data in/out ||  
| || '''Default:''' 00000000
|-
|-
| 70 || SCLK || in cmos || Serial port clock, positive edge sensitive ||  
|rowspan="3"|0x78 || 7-6 || Not used.
|-
|-
| 71 || PLLCLK || in, cmos or clipped sine || PLL reference clock input (23MHz - 41 MHz) || Minimum input level is 0.2Vpp. Both DC and AC coupling supported.
| 5-0 || RDLEXT_LNA_RXFE[5:0]: Controls the on-chip LNA load resistor for the external load mode of the LNA. In practice, this will be set to high value, the output will be ac coupled, and the actual load is defined on PCB.
* 011100 – ('''Default''')
|-
|-
| 72 || TRXVDDDSM18 || digital supply || Delta sigma digital core supply (1.8V) ||  
| || '''Default:''' 00011100
|-
|-
| 73 || VSPI18 || digital supply || SPI digital core supply (1.8V) ||  
|rowspan="3"|0x79 || 7-6 || Not used.
|-
|-
| 74 || PVDDSPI33 || esd supply || SPI pads and ESD Supply (3.3V) || Can be lowered down to 1.8V to support LV signalling
| 5-0 || RDLINT_LNA_RXFE[5:0]: Controls the on-chip LNA load resistor for the internal load mode of the LNA, LNA1 and LNA2.
* 011100 – ('''Default''')
|-
|-
| 75 || RESET || in cmos || Hardware reset, active low ||  
| || '''Default:''' 00011100
|-
|-
| 76 || RXEN || in cmos || Receiver enable, active high ||  
|rowspan="3"|0x7A || 7-4 || ICT_MIX_RXFE[3:0]: Control for tweaking the bias current for mixer.
* 0000 - 0 bias current.
* 0111 - nominal bias current. ('''Default''')
* 1111 - 2.1x nominal bias current.
|-
|-
| 77 || TSTD_out2 || out cmos || TX and RX PLLs digital test point ||  
| 3-0 || ICT_LNA_RXFE[3:0]: Control for tweaking the bias current for LNA.
* 0000 - 0 bias current.
* 0111 - nominal bias current. ('''Default''')
* 1111 - 2.1x nominal bias current.
|-
|-
| 78 || RXVCCCHP33 || analogue supply || RXPLL charge pump supply (3.3V) ||  
| || '''Default:''' 01110111
|-
|-
| 79 || RXVCCLOB33 || analogue supply || RXPLL LO buffer supply (3.3V) ||  
|rowspan="3"|0x7B || 7-4 || ICT_TIA_RXFE[3:0]: Control for tweaking the bias current for TIA (RXVGA1).
* 0000 - 0 bias current.
* 0111 - nominal bias current. ('''Default''')
* 1111 - 2.1x nominal bias current.
|-
|-
| 80 || RXCPOUT || in/out || RXPLL loop filter input ||  
| 3-0 || ICT_MXLOB_RXFE[3:0]: Control for tweaking the bias current for mixer LO buffer.
* 0000 - 0 bias current.
* 0111 - nominal bias current. ('''Default''')
* 1111 - 2.1x nominal bias current.
|-
|-
| 81 || RXPVDDPLL33B || esd supply || RXPLL pads ESD supply (3.3V) ||  
| || '''Default:''' 01110111
|-
|-
| 82 || RXVCCVCO33 || analogue supply || RXPLL 3.3V supply (3.3V) ||  
|rowspan="5"|0x7C || 7 || Not used.
|-
|-
| 83 || RXVCCPLL18 || digital supply || RXPLL 1.8V supply (1.8V) ||  
| 6-3 || LOBN_MIX_RXFE[3:0]: Tweak for the LO bias of the mixer for optimum linearity.
* 0000 –  Minimum bias voltage.
* 0011 – ('''Default''')
* 1111 – Maximum bias voltage.
|-
|-
| 84 || RXVDDVCO18 || analogue supply || RX PLL VCO supply (1.8V) ||
| 2 || RINEN_MIX_RXFE: Termination resistor on external mixer input enable.
* 1 – Active.
* 0 – Inactive. ('''Default''')
|-
|-
| 85 || RXVCCPLL33 || analogue supply || RX PLL 3.3V supply ||  
| 1-0 || G_FINE_LNA3_RXFE[1:0]: LNA3 fine gain adjustment.
* 00 – +0 dB ('''Default''')
* 01 – +1 dB
* 10 – +2 dB
* 11 – +3 dB
|-
|-
| 86 || RXPVDDPLL33A || esd supply || RXPLL pads ESD supply (3.3V) ||  
| || '''Default:''' 00011000
|}
 
===RX FE Modules Configuration (Test Mode)===
{| class="wikitable"
! Address (7 bits) !! Bits !! Description
|-
|-
| 87 || RXVTUNE || in/out || RXPLL loop filter output ||  
|rowspan="6"|0x7D || 7-4 || Not used.
|-
|-
| 88 || UNUSED ||  ||  || Connect to ground
| 3 || PD_TIA_RXFE: TIA (RXVGA1) power down.
* 0 – Block active. ('''Default''')
* 1 – Block inactive.
|-
|-
| 89 || XRES12k || in/out || External 12k 1% resistor to ground ||  
| 2 || PD_MXLOB_RXFE: Mixer LO buffer power down.
* 0 – Block active. ('''Default''')
* 1 – Block inactive.
|-
|-
| 90 || RXVCCMIX33 || analogue supply || RXMIX supply (3.3V) ||  
| 1 || PD_MIX_RXFE: Mixer power down.
* 0 – Block active. ('''Default''')
* 1 – Block inactive.
|-
|-
| 91 || OEXLNA1P || out || LNA1 output positive ||  
| 0 || PD_LNA_RXFE: LNA power down.
* 0 – Block active. ('''Default''')
* 1 – Block inactive.
|-
|-
| 92 || IEXMIX1P || in || Mixer input 1 positive ||  
| || '''Default:''' 00000000
|-
|-
| 93 || UNUSED || ||  || Connect to ground
|rowspan="2"|0x7E || 7-0 || SPARE0[7:0]
|-
|-
| 94 || IEXMIX1N || in || Mixer input 1 negative ||  
| || '''Default:''' 00000000
|-
|-
| 95 || OEXLNA1N || out || LNA1 output negative ||  
|rowspan="2"|0x7F || 7-0 || SPARE1[7:0]
|-
|-
| 96 || RXIN1P || in || RX1 (LNA1) input ||  
| || '''Default:''' 00000000
|}
 
==Control Block Diagrams==
===SPI Read/Write Pseudocode===
<source lang="c">
//----------------------------------------------------------------------------
// Write command, SPI module address, register address
// Read data
//----------------------------------------------------------------------------
void SPI_Read(BYTE COMMAND)
{
BYTE DATA; //We will read data there
//Write Command and Address (MSB First)
//First 1 bit (MSB)  = Command
//Next 3 bits  = SPI memory block address
//Next 4 (LSBs) bits = Register Address
for(int i=7; i>=0; i--)
{
if(i’th bit in COMMAND is ‘1’)
{
Set Data Output line to ‘1’;
}
else
{
Set Data Output line to ‘0’;
};
Apply Rising and Falling CLK signal edges to CLK line;
};
 
//Read Data (MSB First)
//Note: At this point we have data MSB valid from the chip.
for(int i=7; i>=0; i--)
{
if(there is ‘1’ at the Data Input Line)
{
Set i’th bit in DATA ‘1’;
}
else
{
Set i’th bit in DATA ‘0’;
};
Apply Rising and Falling CLK signal edges to CLK line;
};
};
 
//----------------------------------------------------------------------------
// Write data to the chip:
// First byte: Command, SPI module address, register address
// Second byte: Data
//----------------------------------------------------------------------------
void SPI_Write(BYTE COMMAND, BYTE DATA)
{
//Write Command, Address
for(int i=7; i>=0; i--)
{
if(i’th bit in COMMAND is ‘1’)
{
Set Data Output line to ‘1’;
}
else
{
Set Data Output line to ‘0’;
};
Apply Rising and Falling CLK signal edges to CLK line;
};
 
//Write Data
for(int i=7; i>=0; i--)
{
if(i’th bit in DATA is ‘1’)
{
Set Data Output line to ‘1’;
}
else
{
Set Data Output line to ‘0’;
};
Apply Rising and Falling CLK signal edges to CLK line;
};
};
</source>
 
===Loopback and Bypass Modes===
[[File:LMS6002Dr2-Loopback-Test.png|550px|center|LMS6002D Loopback and Test Options]]
 
===Envelop and Pick Detector Multiplexer===
[[File:LMS6002Dr2-Envelop-Pick-Detector.png|550px|center|LMS6002D Envelop/Pick Detector Analogue MUX]]
 
===TX/RX PLL===
The frequency setting for both TX and RX PLLs is the same as described here. TX PLL SPI registers are at x001xxxx and TX PLL registers are at x010xxxx.
 
To configure the PLL there are a number of variables which need to be set.
* Integer and fractional part of the divider.
* FRANGE value.
* VCO CAP, charge pump current (Icp) and charge pump offset current (Ioff).
 
This assumes the given loop filter value with a loop BW of 100kHz is used.
 
====FREQSEL====
To simplify the TX/RX PLL register setup the FRANGE and SELVCO register are combined to FREQSEL register. The frequency range and FREQSEL[5:0] value table is reproduced below.
 
{| class="wikitable"
!colspan="3"|FREQSEL[5:0]
|-
|-
| 97 || RXIN1EP || in || LNA1 external emitter inductance ||  Connect to ground
!colspan="2"|Freuency Range (GHz) !! Value
|-
|-
| 98 || RXIN1N || in || RX1 (LNA1) input ||  
| 0.2325 || 0.285625 || 100111
|-
|-
| 99 || RXIN1EN || in || LNA1 external emitter inductance ||  Connect to ground
| 0.285625 || 0.336875 || 101111
|-
|-
| 100 || RXIN2P || in || RX2 (LNA2) input ||  
| 0.336875 || 0.405 || 110111
|-
|-
| 101 || RXVCCLNA33 || analogue supply || RX LNA supply (3.3V) ||  
| 0.405 || 0.465 || 111111
|-
|-
| 102 || RXIN2N || in || RX2 (LNA2) input ||  
| 0.465 || 0.57125 || 100110
|-
|-
| 103 || OEXLNA2P || out || LNA2 output positive ||  
| 0.57125 || 0.67375 || 101110
|-
|-
| 104 || IEXMIX2P || in || Mixer input 2 positive ||  
| 0.67375 || 0.81 || 110110
|-
|-
| 105 || OEXLNA2N || out || LNA 2 output negative ||  
| 0.81 || 0.93 || 111110
|-
|-
| 106 || IEXMIX2N || in || Mixer input 2 negative ||  
| 0.93 || 1.1425 || 100101
|-
|-
| 107 || RXPVDD33 || esd supply || RX pads ESD supply (3.3V) ||  
| 1.1425 || 1.3475 || 101101
|-
|-
| 108 || RXIN3P || in || RX3 (LNA3) input ||  
| 1.3475 || 1.62 || 110101
|-
|-
| 109 || RXVCCTIA33 || analogue supply || RXTIA (RXVGA1) supply (3.3V) ||  
| 1.62 || 1.86 || 111101
|-
|-
| 110 || RXIN3N || in || RX3 (LNA3) input ||  
| 1.86 || 2.285 || 100100
|-
|-
| 111 || RXVCCLPF33 || analogue supply || RXLPF supply (3.3V) ||  
| 2.285 || 2.695 || 101100
|-
|-
| 112 || RXVCCVGA33 || analogue supply || RXVGA2 supply (3.3V) ||  
| 2.695 || 3.24 || 110100
|-
|-
| 113 || RXOUTQP || in/out || RXVGA2 output / RX ADC input ||  
| 3.24 || 3.72 || 111100
|}
 
For example, UMTS Band I centre frequency 2140MHz is in the range 1.86 to 2.285GHz, hence FREQSEL = 100100 (0x24).
 
====Integer and Fractional Part of the Divider====
For wanted LO frequency <math>\mathit{f_{LO}}</math> and given PLL reference clock frequency <math>\mathit{f_{REF}}</math>, calculate calculate integer and fractional part of the divider as below.
 
First, find temporary variable <math>x</math> from the 3 least significant bits of the <math>\mathit{FREQSEL}</math> value:
 
<math>x = 2 ^ {\mathit{FREQSEL}[2:0] - 3}</math>
 
Use x to calculate <math>\mathit{NINT}</math> and <math>\mathit{NFRAC}</math>:
 
<math>\mathit{NINT} = \biggl\lfloor {x * \mathit{f_{LO}} \over \mathit{f_{REF}}} \biggr\rfloor</math>
 
<math>\mathit{NFRAC} = \biggl\lfloor 2 ^ {23} \biggl[ {x * \mathit{f_{LO}} \over \mathit{f_{REF}}} - \mathit{NINT} \biggr] \biggr\rfloor</math>
 
and store the values in <math>\mathit{NINT}</math>/<math>\mathit{NFRAC}</math> registers at address 0x10-0x13 for TXPLL and 0x20-0x23 for RX PLL.
 
For example <math>\mathit{f_{LO}}</math> is band 1 centre frequency of 2140MHz, and <math>\mathit{f_{REF}}</math> = 30.72MHz:
 
<math>\mathit{FREQSEL}[5:0] = 0\mathrm{b}100100, \mathit{FREQSEL}[2:0] = 0\mathrm{b}100 = 0 \mathrm{x} 4 = 4</math>
 
<math>x = 2 ^ {\mathit{FREQSEL}[2:0] - 3} = 2 ^ {4 - 3} = 2 ^ 1 = 2</math>
 
<math>\mathit{NINT} = \biggl\lfloor {x * \mathit{f_{LO}} \over \mathit{f_{REF}}} \biggr\rfloor = \biggl\lfloor {2 * 2140 \over 30.72} \biggr\rfloor = 139</math>
 
<math>\mathit{NFRAC} = \biggl\lfloor 2 ^ {23} \biggl[ {x * \mathit{f_{LO}} \over \mathit{f_{REF}}} - \mathit{NINT} \biggr] \biggr\rfloor = \biggl\lfloor 2 ^ {23} \biggl[ {2 * 2140 \over 30.72} - 139 \biggr] \biggr\rfloor = 2708821</math>
 
====VCO Capacitor, Icp and Ioff Selection====
For the PLL loop filter implemented on the evaluation board, loop bandwidth of 100kHz and optimum PLL phase noise performance, the following charge pump current setup is recommended.
* Charge pump current Icp=1200uA (default).
* Charge pump current offset up Ioff up = 30uA.
* Charge pump current offset down Ioff down = 0uA (default).
 
Regarding VCOCAP selection, a flexible algorithm based on monitoring on chip Vtune comparators state is developed as described below.
 
[[File:LMS6002Dr2-VCO-Capacitance-Selection.png|550px|center|LMS6002 VCO Capacitance Selection]]
 
Typical measured Vtune variation with the VCOCAP codes for the two target LO frequencies, 1.95GHz and 2.14GHz. Obviously, Vtune is changing from 2.9V down to 0V. However, PLL lock is guaranteed only when Vtune is in the range 0.5V-2.5V. Also, for the best phase noise performance, Vtune should be kept around the middle of the range i.e. 1.5V.
 
There are two on chip Vtune comparators per PLL as shown in [[#PLL Control|PLL Control]]. Their threshold voltages are set to Vth Low=0.5V and Vth High=2.5V. The state of the comparators can be obtained by powering them up (register 0x1B for TXPLL or 0x2B for RXPLL, bit 3) and reading the register 0x1A for TXPPLL or 0x2A for RXPLL, bits 7-6. True table is given below.
 
{| class="wikitable"
! VTUNE H !! VTUNE L !! Status
|-
|-
| 114 || RXOUTQN || in/out || RXVGA2 output / RX ADC input ||  
| 0 || 0 || OK, Vtune in range.
|-
|-
| 115 || RXOUTIN || in/out || RX VGA2 output / RX ADC input ||  
| 1 || 0 || Vtune is high (&gt; 2.5V), PLL lock not guaranteed.
|-
|-
| 116 || RXOUTIP || in/out || RX VGA2 output / RX ADC input ||  
| 0 || 1 || Vtune is Low (&lt; 0.5V), PLL lock not guaranteed.
|-
|-
| 117 || GLOBAL GND || GLOBAL GND || Package paddle ground ||  
| 1 || 1 || Not possible, check SPI connections.
|}
|}


==Typical Application==
These can be used to choose VCOCAP code. All we need to find is the code CMIN when comparators change the state from “10” to “00” and the code CMAX when the comparators change the state from “00” to “01”. Optimum VCOCAP code is then the middle one between CMIN and CMAX. For LO=2.4GHz, this is illustrated in [[#VCO Capacitor, Icp and Ioff Selection|VCO Capacitor, Icp and Ioff Selection]]. In this case, optimum code is around 41.
[[File:LMS6002D-Typical-Application-Circuit-RF-Part.png|center|550px|LMS6002D Typical Application Circuit, RF Part]]
 
A typical application circuit of LMS6002D is given above. Note that only the RF part is shown. It is recommended all unused pins to be grounded, digital test pins should be left open while RF pins should be connected as indicated. As shown, RF ports are matched for UMTS bands I and V while TXOUT2 and RXIN3 are broadband matched. Refer to “LMS6002D Reference Design and PCB Layout Recommendations” for more details.
The algorithm is summarised as below.
# Select correct [[#FREQSEL|FREQSEL]].
# Set target LO frequency (NINT, NFRAC) as explained in [[#Integer and Fractional Part of the Divider|Integer and Fractional Part of the Divider]]
# Sweep VCOCAP codes from 0-63. Monitor the state of Vtune comparators.
## Record the code CMIN when Vtune comparators state changes from "10" to "00" (PLL enters 'in range' state).
## Record the code CMAX when Vtune comparators state changes from "00" to "01" (PLL leaves 'in range' state).
## Select the middle code between CMIN and CMAX ( C=(CMIN+CMAX)/2 ).
 
Note that faster search algorithm (replacement for step 3 above) can be implemented as shown in [[#VCO and VCOCAP Code Selection Algorithm|VCO and VCOCAP Code Selection Algorithm]].
 
Once the PLL is set, Vtune comparators can also be used as lock (in range) indication.
 
====PLL Control====
[[File:LMS6002Dr2-PLL-Control.png|550px|center|LMS6002D PLL Control]]
 
===TX/RF LPF===
[[File:LMS6002Dr2-TXRX-LPF-Control.png|550px|center|LMS6002D TX/RX LPF Control]]
 
===TX RF===
[[File:LMS6002Dr2-TXRF-Control.png|550px|center|LMS6002D TX RF Control]]
 
===RXVGA2===
[[File:LMS6002Dr2-RXVGA2-Control.png|550px|center|LMS6002D RXVGA2 Control]]
 
===RX FE===
[[File:LMS6002Dr2-RXFE-Control.png|550px|center|LMS6002D RX FE Control]]
 
==Calibration Flow Charts==
===General DC Calibration Procedure===
[[File:LMS6002Dr2-General-DC-Calibration.png|550px|center|LMS6002D General DC Calibration Flow Chart]]
 
===DC Offset Calibration of LPF Tuning Module===
[[File:LMS6002Dr2-DC-Offset-Calibration-LPF-Tuning-Module.png|550px|center|LMS6002D DC Offset Calibration of LPF Tuning Module Flow Chart]]
 
===TX/RX LPF DC Offset Calibration===
[[File:LMS6002Dr2-TXRX-LPF-DC-Offset-Calibration.png|550px|center|LMS6002D TX/RX LPF DC Offset Calibration Flow Chart]]
 
===RXVGA2 DC Offset Calibration===
[[File:LMS6002Dr2-RXVGA2-DC-Offset-Calibration.png|550px|center|LMS6002D RXVGA2 DC Offset Calibration Flow Chart]]
 
===LPF Bandwidth Tuning===
[[File:LMS6002Dr2-LPF-Bandwidth-Tuning.png|550px|center|LMS6002D LPF Bandwidth Tuning Flow Chart]]
 
===VCO and VCOCAP Code Selection Algorithm===
====General Procedure====
[[File:LMS6002Dr2-VCO-VCOCAP-Code-Selection-Algorithm-General.png|550px|center|LMS6002D VCO and VCOCAP Code Selection Algorithm, General Procedure Flow Chart]]
 
====VCO Selection====
[[File:LMS6002Dr2-VCO-VCOCAP-Code-Selection-Algorithm-VCO-Selection.png|550px|center|LMS6002D VCO Code Selection Algorithm Flow Chart]]
 
====VCOCAP Selection====
[[File:LMS6002Dr2-VCO-VCOCAP-Code-Selection-Algorithm-VCOCAP-Selection.png|550px|center|LMS6002D VCOCAP Code Selection Algorithm Flow Chart]]
 
===Auto Calibration Summary===
The following is recommended auto calibration sequence.
# [[#DC Offset Calibration of LPF Tuning Module|DC offset cancellation of the LPF tuning module]].
# [[#LPF Bandwidth Tuning|LPF bandwidth tuning]].
# [[#TX/RX LPF DC Offset Calibration|DC offset cancellation of the TXLPF]].
# [[#TX/RX LPF DC Offset Calibration|DC offset cancellation of the RXLPF]].
# [[#RXVGA2 DC Offset Calibration|DC offset cancellation of the RXVGA2]].
 
Please note, while executing DC calibration procedures no TX/RX inputs should be applied.
 
LMS6002D has on-chip DACs for TX LO leakage calibration. Those DACs have been designed to provide around -50/-60dBc LO leakage cancellation.
 
===Correction and Measurement Functions Implemented in BB===
====Applying IQ Gain Offset to Baseband Signals====
Software in baseband initially applies course gain variation on the I or Q channel and measures the loopbacked signal via the LMS6002D receiver to measure the optimum value. The example block for gain correction is shown below.
 
[[File:LMS6002Dr2-IQ-Gain-Correction.png|550px|center|LMS6002D Gain Correction Block Diagram]]
 
This block implements the following equation:
 
<math>
\begin{align}
\mathit{Iout} = \mathit{Iin} * \mathit{G\_I} \\
\mathit{Qout} = \mathit{Qin} * \mathit{G\_Q}
\end{align}
</math>
 
<math>\mathit{G\_I}</math> and <math>\mathit{G\_Q}</math> are programmable correction factors which are altered by the BB modem to minimise unwanted side band component.
 
====Applying IQ Phase Band Offset Baseband Signals====
The baseband S/W applies a course phase multiplier on the I or Q channel and measures the loopbacked signal via the LMS6002D receiver to measure the optimum value. The process is then repeated using a finer control step to ascertain the optimum phase and gain offset value to be applied. The example block for gain correction shown below.
 
[[File:LMS6002Dr2-IQ-Phase-Correction.png|550px|center|LMS6002D Phase Correction Block Diagram]]
 
IQ phase correction is in fact equivalent to vector rotation. If quadrature phase error is <math>\alpha</math>, then I and Q vectors are both rotated by <math>\alpha/2</math> but in opposite directions hence IQ outputs of the corrector are 90&deg; phase shifted. IQ phase correction equations are given below:
 
<math>
\begin{align}
\mathit{Iout} = \mathit{Iin} + \mathit{Qin} * \tan \biggl( {\alpha \over 2} \biggr) \\
\mathit{Qout} = \mathit{Qin} + \mathit{Iin} * \tan \biggl( {\alpha \over 2} \biggr)
\end{align}
</math>
 
The value of <math>\tan(\alpha/2)</math> is used as programmable correction parameter. BB modem should alter this value to minimize unwanted side band component.
 
====Correcting RX I and Q DC Levels====
Software in the receiver baseband is required to calibrate the DC level on the I and Q channel received. The process of applying DC level adjustment to the I & Q channel is an optional requirement required for fine tuning purposes only. The methodology of correcting the DC levels is shown in the diagram below.
 
[[File:LMS6002Dr2-RX-I-Q-DC-Level-Correction.png|550px|center|LMS6002D RX I and Q DC Level Correction Block Diagram]]
 
The averaging (COMB) filter calculates the DC of the corrector input and that DC is subtracted to cancel it. The loop is running all the time so any change of the RX DC due to the signal level change, RX gain change or temperature will be tracked and cancelled automatically. The loop only programmable parameter is DCAVG which defines averaging window size.


{{LimeMicro}}
{{LimeMicro}}

Revision as of 14:51, 16 September 2015

Serial Port Interface

Description

The functionality of the LMS6002 transceiver is fully controlled by a set of internal registers which can be accessed through a serial port interface. Both write and read operations are supported. The serial port can be configured to run in 3 or 4 wire mode with the following pins used:

  • SEN - serial port enable, active low
  • SCLK - serial clock
  • SDIO - serial data in/out in 3 wire mode, serial data input in 4 wire mode
  • SDO-serial data out in 4 wire mode, don’t care in 3 wire mode

Serial port key features:

  • 16 serial clock cycles are required to complete write operation
  • 16 serial clock cycles are required to complete read operation
  • Multiple write/read operations are possible without toggling serial enable signal

All configuration registers are 8-bit wide. Write/read sequence consists of 8-bit instruction followed by 8-bit data to write or read. The MSB of the instruction bit stream is used as SPI command, where CMD = 1 for write and CMD = 0 for read. Next 3 bits represent the block address, since LMS6002 configuration registers are divided into eight logical blocks as shown in the LMS6002Dr2 Memory Map. The remaining 4 bits of the instruction are used to address particular registers within the block as detailed in the Memory Map Description. Use address values from the tables.

Write/read cycle waveforms are shown below. Note that write operation is the same for both 3-wire and 4-wire modes. Although not shown in the figures, multiple byte write/read is possible by repeating instruction/data sequence while keeping SEN low.

Write Operation Waveform

LMS6002D SPI Write Operation
LMS6002D SPI Write Operation

Read Operation Waveform, 4-Wire (Default)

LMS6002D SPI Read Operation, 4-Wire (Default)
LMS6002D SPI Read Operation, 4-Wire (Default)

Read Operation Waveform, 3-Wire

LMS6002D SPI Read Operation, 3-Wire
LMS6002D SPI Read Operation, 3-Wire

Memory Map Description

Memory Map

Address (7 bits) Description
x000:xxxx Top level configuration (as in Top Level Configuration (User Mode), (Test Mode))
x001:xxxx TX PLL configuration (as in TX/RX PLL Configuration (User Mode), (Test Mode))
x010:xxxx RX PLL configuration (as in TX/RX PLL Configuration (User Mode), (Test Mode))
x011:xxxx TX LPF modules configuration (as in TX LPF Modules Configuration (User Mode), (Test Mode))
x100:xxxx TX RF modules configuration (as in TX RF Modules Configuration (User Mode), (Test Mode))
x101:xxxx RX LPF, DAC/ADC modules configuration (as in RX LPF, DAC/ADC Modules Configuration (User Mode), (Test Mode))
x110:xxxx RX VGA2 configuration (as in RX VGA2 Configuration (User Mode), (Test Mode))
x111:xxxx RX FE modules configuration (as in RX FE Modules Configuration (User Mode), (Test Mode))

Top Level Configuration (User Mode)

Address (7 bits) Bits Description
0x00 7-6 Not used
5-0 DC_REGVAL[5:0]: Value from DC calibration module selected by DC_ADDR.
Read only.
0x01 7-5 RCCAL_LPFCAL[2:0]: Value of the cal_core block in the LPF which calibrates the RC time constant.
4-2 DC_LOCK[2:0]: Lock pattern register.
  • Locked when register value is not "000" nor "111".
1 DC_CLBR_DONE : indicates calibration status.
  • 1 – Calibration in progress.
  • 0 – Calibration is done.
0 DC_UD: Value from DC module comparator, selected by DC_ADDR
  • 1 – Count Up.
  • 0 – Count Down.
Read only.
0x02 7-6 Not used
5-0 DC_CNTVAL[5:0] : Value to load into selected (by DC_ADDR) DC calibration module.
Default: 00011111
0x03 7-6 Not used.
5 DC_START_CLBR: Start calibration command of the module, selected by DC_ADDR
  • 1 – Start Calibration.
  • 0 – Deactivate Start Calibration command. (Default)
4 DC_LOAD: Load value from DC_CNTVAL to module, selected by DC_ADDR
  • 1 – Load Value.
  • 0 – Deactivate Load Value command. (Default)
3 DC_SRESET: resets all DC Calibration modules
  • 1 – Reset inactive. (Default)
  • 0 – Reset active.
2-0 DC_ADDR[2:0]: Active calibration module address.
  • 000 – LPF tuning module.
  • 001-111 – Not used.
Default: 00001000
0x04 7-4 VER[3:0]: Chip version.
3-0 REV[3:0]: Chip revision.
Read only.
Default: 00100010
0x05 7 DECODE:
  • 0 – Decode control signals. (Default)
  • 1 – Use control signals from test mode registers.
6 Not used.
5 SRESET: DSM soft reset.
  • 0 – Reset state
  • 1 – inactive. (Default)
4 EN: Top modules enable.
  • 0 – Top modules powered down.
  • 1 – Top modules enabled. (Default)
3 STXEN: Soft transmit enable.
  • 0 – Transmitter powered down. (Default)
  • 1 – Transmitter enabled.
2 SRXEN: Soft receive enable.
  • 0 – Receiver powered down. (Default)
  • SRXEN=1 – Receiver enabled.
1 TFWMODE: Serial port mode.
  • 0 – Three-wire mode.
  • 1 – Four-wire mode (Default)
0 Not used.
Default: 00110010
0x06 7-4 Not used.
3 CLKSEL_LPFCAL: Select the clock for LPF tuning module.
  • 0 – 40 MHz clock generated from TX PLL output.
  • 1 – Use PLL reference clock. (Default)
2 PD_CLKLPFCAL: Power down on-chip LPF tuning clock generation block.
  • 0 – Powered up.
  • 1 – Powered down. (Default)
1 ENF_EN_CAL_LPFCAL: Enables the enforce mode. Passes FORCE_CODE_CAL_LPFCAL to RCCAL_LPFCAL.
  • 0 – Enforce mode disabled. (Default)
  • 1 – Enforce mode enabled.
0 RST_CAL_LPFCAL: Reset signal used at the beginning of calibration cycle. Reset signal needs to be longer than 100ns.
  • 0 – Normal state
  • 1 – Reset state (Default)
Default: 00001101
0x07 7 EN_CAL_LPFCAL: Enable signal. If =1--> the block is enabled. Should be enabled only when the RC calibration algorithm is running.
  • 0 – Block disabled (Default)
  • 1 – Block enabled
6-4 FORCE_CODE_CAL_LPFCAL[2:0]: Input code coming from software. Will be passed to the output if ENF_EN_CAL_LPFCAL=1.
  • 000 (Default)
3-0 BWC_LPFCAL[3:0]: LPF bandwidth control. (Set this code to RXLPF BWC if RXLPF and TXLPF have different cut-off frequencies).
code Bandwidth [MHz]
0000 14 (Default)
0001 10
0010 7
0011 6
0100 5
0101 4.375
0110 3.5
0111 3
1000 2.75
1001 2.5
1010 1.92
1011 1.5
1100 1.375
1101 1.25
1110 0.875
1111 0.75
Default: 00000000
0x08 7 Reserved.
  • 0 – (Default)
6 LBEN_LPFIN: BB loopback enable. If =1, TX BB loopback signal is connected to RXLPF input. If enabled, RXTIA should be disabled (powered down)
  • 0 – (Default)
5 LBEN_VGA2IN: BB loopback enable. If =1, TX BB loopback signal is connected to RXVGA2 input. If enabled, LPF should be disabled (powered down).
  • 0 – (Default)
4 LBEN_OPIN: BB loopback enable. If =1, TX BB loopback signal is connected to the RX output pins. If enabled, RXLPF and RXVGA2 should be disabled (powered down)
  • 0 – (Default)
3-0 LBRFEN[3:0]: RF loop back control. When activated, LNAs should be disabled (powered down).
  • 0 – RF loopback disabled (Default)
  • 1 – TXMIX output connected to LNA1 path
  • 2 – TXMIX output connected to LNA2 path
  • 3 – TXMIX output connected to LNA3 path
  • 4-15 – Reserved. Not valid for settings.
Default: 00000000
0x09 7 RXOUTSW: RX out/ADC in high-Z switch control.
  • 0 – Switch open (RX output/ADC input chip pins disconnected.) (Default)
  • 1 – Switch closed. RXVGA2 should be powered off first.
6-0 CLK_EN[6:0]: Clock distribution control.
6 CLK_EN [6]
  • 1 – PLLCLKOUT enabled. (Default)
  • 0 – PLLCLKOUT disabled.
5 CLK_EN [5]
  • 1 – LPF CAL clock enabled.
  • 0 – LPF CAL clock disabled. (Default)
4 CLK_EN [4]
  • 1 – RX VGA2 DCCAL clock enabled.
  • 0 – RX VGA2 DCCAL clock disabled. (Default)
3 CLK_EN [3]
  • 1 – Rx LPF DCCAL clock enabled.
  • 0 – Rx LPF DCCAL clock disabled. (Default)
2 CLK_EN [2]
  • 1 – RX DSM SPI clock enabled.
  • 0 – Rx DSM SPI clock disabled. (Default)
1 CLK_EN [1]
  • 1 – Tx LPF SPI DCCAL clock enabled.
  • 0 – Tx LPF SPI DCCAL clock disabled. (Default)
0 CLK_EN [0]
  • 1 – Tx DSM SPI clock enabled.
  • 0 – Tx DSM SPI clock disabled. (Default)
Default: 01000000
0x0A 7-2 Not used.
1 FDDTDD: Frequency/Time division duplexing selection.
  • 0 – FDD mode. (Default)
  • 1 – TDD mode.
0 TDDMOD: TDD mode selection if FDDTDD=1.
  • 0 – TDD Transmit mode. (Default)
  • 1 – TDD Receive mode.
Default: 00000000

Top Level Configuration (Test Mode)

Address (7 bits) Bits Description
0x0B 7-5 Not used.
4 PDXCOBUF: XCO buffer power down.
  • 0 – Buffer powered up. (Default)
  • 1 – Buffer powered down.
3 SLFBXCOBUF: XCO buffer self-biasing control.
  • 0 – Self-biasing disabled.
  • 1 – Self-biasing enabled. (Default)
2 BYPXCOBUF: XCO buffer bypass.
  • 0 – Buffer active. (Default)
  • 1 – Buffer bypassed.
1-0 PD[1:0]: Power down control for top modules.

PD[1]

  • 1 – PD_DCOREF_LPFCAL powered down.
  • 0 – PD_DCOREF_LPFCAL powered up. (Default)

PD[0]

  • 1 – RF loopback switch powered up.
  • 0 – RF loopback switch powered down.(Default)
Default: 00001000
0x0E- 5-0 00000001 – v1
Read only.
0x0F 7-0 SPARE1[7:0]: Spare configuration register.
Default: 00000000

TX/RX PLL Configuration (User Mode)

Address (7 bits) Bits Description
Tx: 0x10, Rx: 0x20 7-0 NINT[8:1]: Integer part of the divider (MSBs).*
Default: ”01000001“0, NINT=130.
Tx: 0x11, Rx: 0x21 7 NINT[0]: Integer part of the divider (LSB).*
6-0 NFRAC[22:16]: Fractional part of the divider*
Tx: 0x12, Rx: 0x22 7-0 NFRAC[15:8] *
Tx: 0x13, Rx: 0x23 7-0 NFRAC[7:0] *
Default: 0”010…0”, NFRAC=0.25, fVCO=130.25*40MHz=5.21GHz.
Tx: 0x14, Rx: 0x24 7 DITHEN: Dithering control.
  • 0 – Disabled.
  • 1 – Enabled. (Default)
6-4 DITHN[2:0]: How many bits to dither if DITHEN=1
  • 000 – 1 bit. (Default)
  • 001 – 2 bits.
  • 010 – 3 bits.
  • 111 – 8 bits.
3 EN: PLL enable.
  • 0 – PLL powered down.
  • 1 – PLL enabled. (Default)
2 AUTOBYP: Delta sigma auto bypass when NFRAC = 0.
  • 0 – Disabled. (Default)
  • 1 – Enabled
1 DECODE.
  • 0 – Decode power down/enable signals. (Default)
  • 1 – Use power down/enable signals from test mode registers.
0 Reserved
  • 0 – (Default)
Default: “10001000”
Tx: 0x15, Rx: 0x25 7-4 SELVCO[2:0]: VCO selection.
  • 000 – All VCOs powered down.
  • 100 – Low frequency VCO (vco4).
  • 101 – Mid low frequency VCO (vco3). (Default)
  • 110 – Mid high frequency VCO (vco2).
  • 111 – High frequency VCO (vco1).
4-2 FRANGE[2:0]: PLL output frequency range selection.
  • 000 – All dividers powered down.
  • 100 – Fvco/2 (2-4GHz range). (Default)
  • 101 – Fvco/4 (1-2GHz range).
  • 110 – Fvco/8 (0.5-1GHz range).
  • 111 – Fvco/16 (0.25-0.5GHz range).
1-0 SELOUT[1:0]: Select output buffer in RX PLL, not used in TX PLL.
  • 00 – All output buffers powered down.
  • 01 – First buffer enabled for LNA1 path. (Default)
  • 10 – Second buffer enabled for LNA2 path.
  • 11 – Third buffer enabled for LNA3 path.
Default: “10110001”
Tx: 0x16, Rx: 0x26 7 EN_PFD_UP: Enable PFD UP pulses.
  • 0 – Disabled.
  • 1 –Enabled. (Default)
6 OEN_TSTD_SX.
  • 0 – Test signal output buffer disabled. (Default)
  • 1 – Test signal output buffer enabled.
5 PASSEN_TSTOD_SD.
  • 0 – Test signal pass disabled. (Default)
  • 1 – Test signal pass enabled.
4-0 CHP[4:0]: Charge pump current. Binary coded, LSB = 100uA.
  • 00000 – 0uA.
  • 00001 – 100uA.
  • ...
  • 11000 – 2400uA.
  • ... – 2400uA.
Default: “10001100”, ICHP = 1.2mA
Tx: 0x17, Rx: 0x27 7 BYPVCOREG: Bypass VCO regulator.
  • 0 – Not bypassed.
  • 1 – Regulator bypassed. (Default)
6 PDVCOREG: VCO regulator power down.
  • 0 – Regulator powered up.
  • 1 – Regulator powered down. (Default)
5 FSTVCOBG: VCO regulator band gap settling time control. Shorts the resistor in band gap to speed up charging for faster response. After the initial charge up, it should be disabled.
  • 1 – Resistor shorted. (Default)
  • 0 – Switch open.
4-0 OFFUP[4:0]: Charge pump UP offset current. Binary coded, LSB = 10uA.
  • 00000 – 0uA.
  • 00001 – 10uA.
  • ...
  • 11000 – 240uA.
  • ... – 240uA.
Default: “11100000” = 0mA.
Tx: 0x18, Rx: 0x28 7-5 VOVCOREG[3:1]: VCO regulator output voltage control, 3 MSBs. LSB=100mV, VOVCOREG[3:0] coded as below.
  • 0000 – 1.4V, min output.
  • ...
  • 0101 – 1.9V. (Default)
  • ...
  • 1100 – 2.6V, max output.
  • 1101, 1110, 1111 – not valid codes
4-0 OFFDOWN[4:0]: Charge pump DOWN offset current. Binary coded, LSB = 10uA.
  • 00000 – 0uA.
  • 00001 – 10uA.
  • ...
  • 11000 – 240uA.
  • ... – 240uA.
Default: “01000000” = 0mA.
Tx: 0x19, Rx: 0x29 7 VOVCOREG[0]: VCO regulator output voltage control, LSB.
6 Not used.
5-0 VCOCAP[5:0]: Switch capacitance programming. Binary coded.
  • 000000 – Max capacitance, min frequency.
  • 010100 – (Default)
  • 111111 – Min capacitance, max frequency.
Default: “10010100", VCOCAP=20
  • Shadow registered

TX/RX PLL Configuration (Test Mode)

Address (7 bits) Bits Description
Tx: 0x1A, Rx: 0x2A 7 VTUNE_H (Read Only): Value from Vtune comparator.
6 VTUNE_L (Read Only): Value from Vtune comparator.
5-0 Reserved
  • 000011 – (Default)
Default: “00000011”
Tx: 0x1B, Rx: 0x2B 7-4 Reserved
  • 0111 – (Default)
3 PD_VCOCOMP_SX: VCO Comparator enable.
  • 0 – Enabled (powered up). (Default)
  • 1 – disabled (powered down).
2 Reserved.
  • 1 – (Default)
1 Reserved.
  • 1 – (Default)
0 Reserved.
  • 1 – (Default)
Default: “01110110”, A value = 0, (N=130).
Tx: 0x1C, Rx: 0x2C 7-0 Reserved.
Default: “00111000”
Tx: 0x1D, Rx: 0x2D 7-0 Reserved.
Read only.
Tx: 0x1E, Rx: 0x2E 7-0 Reserved.
Read only.
Tx: 0x1F, Rx: 0x2F 7-0 Reserved.
Read only.

TX LPF Modules Configuration (User Mode)

Address (7 bits) Bits Description
0x30 7-6 Not used.
5-0 DC_REGVAL[5:0]: Value from DC calibration module selected by DC_ADDR.
Read only.
0x31 7-5 Not used.
4-2 DC_LOCK[2:0]: Lock pattern register.
  • Locked, when register value is neither "000" nor "111".
1 DC_CLBR_DONE: indicates calibration status.
  • 1 – Calibration in progress.
  • 0 – Calibration is done.
0 DC_UD: Value from DC module comparator, selected by DC_ADDR.
  • 1 – Count Up.
  • 0 – Count Down.
Read only.
0x32 7-6 Not used.
5-0 DC_CNTVAL[5:0]: Value to load into selected (by DC_ADDR) DC calibration module.
Default: 00011111
0x33 7-6 Not used.
5 DC_START_CLBR: Start calibration command of module selected by DC_ADDR.
  • 1 – Start calibration.
  • 0 – Deactivate start calibration command. (Default)
4 DC_LOAD: Load value from DC_CNTVAL to module, selected by DC_ADDR.
  • 1 – Load Value.
  • 0 – Deactivate Load Value command. (Default)
3 DC_SRESET: Resets all DC Calibration modules.
  • 1 – Reset inactive. (Default)
  • 0 – Reset active.
2-0 DC_ADDR[2:0]: Active calibration module address.
  • 000 – I filter.
  • 001 – Q filter.
  • 010 – 111 Not used.
Default: 00001000
0x34 7-6 Not used.
5-2 BWC_LPF[3:0]: LPF bandwidth control.
code Bandwidth [MHz]
0000 14 (Default)
0001 10
0010 7
0011 6
0100 5
0101 4.375
0110 3.5
0111 3
1000 2.75
1001 2.5
1010 1.92
1011 1.5
1100 1.375
1101 1.25
1110 0.875
1111 0.75
1 EN : LPF modules enable.
  • 0 – LPF modules powered down.
  • 1 – LPF modules enabled. (Default)
0 DECODE.
  • 0 – Decode control signals. (Default)
  • 1 – Use control signals from test mode registers.
Default: 00000010
0x35

DCO_DACCAL_LPF renamed, no action required.

7 Not used.
6 BYP_EN_LPF: LPF bypass enable.
  • 1 – Bypass switches will bypass the LPF.
  • 0 – Normal operation. (Default)
5-0 DCO_DACCAL[5:0]: Resistor calibration control for the DC offset cancellation DAC.
  • 001100 – (Default)
Default: 00001100

TX LPF Modules Configuration (Test Mode)

Address (7 bits) Bits Description
0x36 7 TX_DACBUF_PD: TX data DAC buffers power down.
  • 0 – Enabled. (Default)
  • 1 – Powered Down.
6-4 RCCAL_LPF[2:0]: Calibration value, coming from TRX_LPF_CAL module.
  • 011 – (Default)
3 Not used.
2 PD_DCODAC_LPF: Power down for the DAC in the DC offset cancellation block.
  • 1 – Powered Down.
  • 0 – Enabled. (Default)
1 PD_DCOREF_LPF: Power down signal for the dc_ref_con3 block.
  • 1 – Powered Down.
  • 0 – Enabled. (Default)
0 PD_FIL_LPF: Power down for the filter.
  • 1 – Powered Down.
  • 0 – Enabled. (Default)
Default: 00110000
0x3E 7-0 SPARE0[7:0]: Spare configuration register.
Default: 00000000
0x3F 7 PD_DCOCMP_LPF: Power down DC offset comparators in DC offset cancellation block. Should be powered up only when DC offset cancellation algorithm is running.
  • 1 – Powered Down.
  • 0 – Enabled. (Default)
6-0 SPARE1[6:0]: Spare configuration register
Default: 00000000

RX LPF, DAC/ADC Modules Configuration (User Mode)

Address (7 bits) Bits Description
0x50 7-6 Not used.
5-0 DC_REGVAL[5:0]: Value from DC Calibration module, selected by DC_ADDR.
Read only.
0x51 7-5 Not used.
4-2 DC_LOCK[2:0]: Lock pattern register.
  • Locked, when register value is neither "000" nor "111".
1 DC_CLBR_DONE: indicates calibration status.
  • 1 – Calibration in progress.
  • 0 – Calibration is done.
0 DC_UD: Value from DC module comparator, selected by DC_ADDR.
  • 1 – Count Up.
  • 0 – Count Down.
Read only.
0x52 7-6 Not used.
5-0 DC_CNTVAL[5:0] : Value to load into selected (by DC_ADDR) DC calibration module.
Default: 00011111
0x53 7-6 Not used.
5 DC_START_CLBR: Start calibration command of the module, selected by DC_ADDR.
  • 1 – Start Calibration.
  • 0 – Deactivate Start Calibration command. (Default)
4 DC_LOAD: Load value from DC_CNTVAL to module, selected by DC_ADDR.
  • 1 – Load Value.
  • 0 – Deactivate Load Value command. (Default)
3 DC_SRESET: resets all DC Calibration modules.
  • 1 – Reset inactive. (Default)
  • 0 – Reset active.
2-0 DC_ADDR[3:0]: Active calibration module address.
  • 000 – I filter. (Default)
  • 001 – Q filter.
  • 010-111 – Not used.
Default: 00001000
0x54 7-6 Not used.
5-2 BWC_LPF[3:0]: LPF bandwidth control.
code Bandwidth [MHz]
0000 14 (Default)
0001 10
0010 7
0011 6
0100 5
0101 4.375
0110 3.5
0111 3
1000 2.75
1001 2.5
1010 1.92
1011 1.5
1100 1.375
1101 1.25
1110 0.875
1111 0.75
1 EN : LPF modules enable.
  • 0 – LPF modules powered down.
  • 1 – LPF modules enabled. (Default)
0 DECODE.
  • 0 – Decode control signals. (Default)
  • 1 – Use control signals from test mode registers.
Default: 00000010
0x55 7 Not used.
6 BYP_EN_LPF: LPF bypass enable.
  • 1 – Bypass switches will bypass the LPF.
  • 0 – Normal operation. (Default)
5-0 DCO_DACCAL[5:0]: Resistor calibration control for the DC offset cancellation DAC.
  • 001100 – (Default)
Default: 00001100
0x56 7 TX_DACBUF_PD: Not used.
6-4 RCCAL_LPF[2:0]: Calibration value, coming from TRX_LPF_CAL module.
  • 011 – (Default)
3 Not used.
2 PD_DCODAC_LPF: Power down for the DAC in the DC offset cancellation block.
  • 1 – Powered Down.
  • 0 – Enabled. (Default)
1 PD_DCOREF_LPF: Power down signal for the dc_ref_con3 block.
  • 1 – Powered Down.
  • 0 – Enabled. (Default)
0 PD_FIL_LPF: Power down for the filter.
  • 1 – Powered Down.
  • 0 – Enabled. (Default)
Default: 00110000
0x57 7 EN_ADC_DAC : ADC/DAC modules enable.
  • 0 – ADC/DAC modules powered down.
  • 1 – ADC/DAC modules enabled. (Default)
6 DECODE.
  • 0 – Decode ADC/DAC enable signals. (Default)
  • 1 – Use ADC/DAC enable signals from MISC_CTRL[4:0] register.
5-3 TX_CTRL1[6:4]. DAC Internal Output Load Resistor Control Bits.
  • 111 – 50 Ohms.
  • 110 – 100 Ohms.
  • 101 – 66 Ohms.
  • 100 – 200 Ohms.
  • 011 – 66 Ohms.
  • 010 – 200 Ohms. (Default)
  • 001 – 100 Ohms.
  • 000 – Open Circuit.
2 TX_CTRL1[3]. DAC Reference Current Resistor.
  • 1 – External. (Default)
  • 0 – Internal.
1-0 TX_CTRL1[1:0]. DAC Full Scale Output Current Control (single-ended).
  • 11 – Iout FS=5ma.
  • 10 – Iout FS=2.5ma.
  • 01 – Iout FS=10ma.
  • 00 – Iout FS=5ma. (Default)
Default: 10010100
0x58 7-6 RX_CTRL1[7:6]. Reference bias resistor adjust.
  • 11 – 15uA.
  • 10 – 10uA.
  • 01 – 40uA.
  • 00 – 20uA. (Default)
5-4 RX_CTRL1[5:4]. Reference bias UP.
  • 11 – 2.5X.
  • 10 – 2.0X.
  • 01 – 1.5X.
  • 00 – 1.0X. (Default)
3-0 RX_CTRL1[3:0]. Reference bias DOWN.
  • 1111 – Min bias.
  • 0000 – Max bias. (Default)
Default: 00000000
0x59 7 Not used.
6-5 RX_CTRL2[7:6]. Reference Gain Adjust.
  • 11 – 1.25V.
  • 10 – 1.00V.
  • 01 – 1.75V.
  • 00 – 1.50V. (Default)
4-3 RX_CTRL2[5:4]. Common Mode Adjust.
  • 11 – 790mV
  • 10 – 700mV
  • 01 – 960mV
  • 00 – 875mV (Default)
2-1 RX_CTRL2[3:2]. Reference Buffer Boost.
  • 11 – 2.5X.
  • 10 – 2.0X.
  • 01 – 1.5X.
  • 00 – 1.0X. (Default)
0 RX_CTRL2[0]. ADC Input Buffer Disable.
  • 1 – Disabled. (Default)
  • 0 – Enabled.
Default: 00000001
0x5A 7 MISC_CTRL[9]. Rx Fsync Polarity, frame start.
  • 1 – 1.
  • 0 – 0. (Default)
6 MISC_CTRL[8]. Rx Interleave Mode.
  • 1 – Q,I.
  • 0 – I,Q. (Default)
5 MISC_CTRL[7]. DAC Clk Edge Polarity.
  • 1 – Negative. (Default)
  • 0 – Positive.
4 MISC_CTRL[6]. Tx Fsync Polarity, frame start.
  • 1 – 1.
  • 0 – 0. (Default)
3 MISC_CTRL[5]. Tx Interleave Mode.
  • 1 – Q,I.
  • 0 – I,Q. (Default)
2 RX_CTRL3[7]. ADC Sampling Phase Select.
  • 1 – Falling edge.
  • 0 – Rising edge. (Default)
1-0 RX_CTRL3[1:0]. Clock Non-Overlap Adjust.
  • 11 – +300ps.
  • 10 – +150ps.
  • 01 – +450ps.
  • 00 – Nominal. (Default)
Default: 00100000
0x5B 7-6 RX_CTRL4[7:6] ADC bias resistor adjust.
  • 11 – 15uA.
  • 10 – 10uA.
  • 01 – 40uA.
  • 00 – 20uA. (Default)
5-4 RX_CTRL4[5:4]. Main bias DOWN.
  • 11 – Min bias.
  • 10 –
  • 01 –
  • 00 – Nominal. (Default)
3-2 RX_CTRL4[3:2]. ADC Amp1 stage1 bias UP.
  • 11 – 15uA.
  • 10 – 10uA.
  • 01 – 40uA.
  • 00 – 20uA. (Default)
1-0 RX_CTRL4[1:0]. ADC Amp2-4 stage1 bias UP.
  • 11 – 15uA.
  • 10 – 10uA.
  • 01 – 40uA.
  • 00 – 20uA. (Default)
Default: 00000000
0x5C 7-6 RX_CTRL5[7:6] ADC Amp1 stage2 bias UP.
  • 11 – 15uA.
  • 10 – 10uA.
  • 01 – 40uA.
  • 00 – 20uA. (Default)
5-4 RX_CTRL5[5:4]. ADC Amp2-4 stage2 bias UP.
  • 11 – 15uA.
  • 10 – 10uA.
  • 01 – 40uA.
  • 00 – 20uA. (Default)
3-2 RX_CTRL5[3:2]. Quantizer bias UP.
  • 11 – 15uA.
  • 10 – 10uA.
  • 01 – 40uA.
  • 00 – 20uA. (Default)
1-0 RX_CTRL5[1:0]. Input Buffer bias UP.
  • 11 – 15uA.
  • 10 – 10uA.
  • 01 – 40uA.
  • 00 – 20uA. (Default)
Default: 00000000
0x5D 7-4 REF_CTRL0[7:4]. Bandgap Temperature Coefficient Control.
  • 0111 – Max.
  • 0000 – Nominal. (Default)
  • 1000 – Min.
3-0 REF_CTRL0[3:0]. Bandgap Gain Control.
  • 0111 – Max.
  • 0000 – Nominal. (Default)
  • 1000 – Min.
Default: 00000000
0x5E 7-6 REF_CTRL1[7:6]. Reference Amps bias adjust.
  • 11 – 15uA.
  • 10 – 10uA.
  • 01 – 40uA.
  • 00 – 20uA. (Default)
5-4 REF_CTRL1[5:4]. Reference Amps bias UP.
  • 11 – 2.5X.
  • 10 – 2.0X.
  • 01 – 1.5X.
  • 00 – 1.0X. (Default)
3-0 REF_CTRL1[3:0]. Reference Amps bias DOWN.
  • 1111 – Min bias.
  • 0000 – Max bias. (Default)
Default: 00000000

RX LPF, DAC/ADC Modules Configuration (Test Mode)

Address (7 bits) Bits Description
0X5F 7 PD_DCOCMP_LPF: Power down DC offset comparators in DC offset cancellation block. Should be powered up only when DC offset cancellation algorithm is running.
  • 1 – Powered Down.
  • 0 – Enabled. (Default)
6-5 SPARE00[6:5]: Spare configuration bits.
  • 00 – (Default)
4 MISC_CTRL[4]. Enable DAC.
  • 1 – Enable. (Default)
  • 0 – Off.
3 MISC_CTRL[3]. Enable ADC1 (I Channel).
  • 1 – Enable. (Default)
  • 0 – Off.
2 MISC_CTRL[2]. Enable ADC2 (Q Channel).
  • 1 – Enable. (Default)
  • 0 – Off.
1 MISC_CTRL[1]. Enable ADC reference.
  • 1 – Enable. (Default)
  • 0 – Off.
0 MISC_CTRL[0]. Enable master reference.
  • 1 – Enable. (Default)
  • 0 – Off.
Default: 00011111

TX RF Modules Configuration (User Mode)

Address (7 bits) Bits Description
0x40 7-2 Not used.
1 EN : TXRF modules enable
  • 0 – TXRF modules powered down.
  • 1 – TXRF modules enabled. (Default)
0 DECODE:
  • 0 – Decode control signals. (Default)
  • 1 – Use control signals from test mode registers.
0x41 7-5 Not used.
4-0 VGA1GAIN[4:0]: TXVGA1 gain, log-linear control. LSB=1dB, encoded as shown below.
Code Gain [dB]
00000 -35
00001 -34
10101 -14 (Default)
11110 -5
11111 -4
Default: 00010101
0x42 7-0 VGA1DC_I[7:0]: TXVGA1 DC shift control, LO leakage cancellation. LSB=0.0625mV, encoded as shown below.
Code DC Shift [mV]
00000000 -16
01111111 -0.0625
10000000 0 (Default)
10000001 0.0625
11111111 15.9375
Default: 10000000
0x43 7-0 VGA1DC_Q[7:0]: TXVGA1 DC shift control, LO leakage cancellation LSB=0.0625mV, encoded as shown below.
Code DC Shift [mV]
00000000 -16
01111111 -0.0625
10000000 0 (Default)
10000001 0.0625
11111111 15.9375
Default: 10000000
0x44 7-5 Not used.
4-3 PA_EN[2:0]: VGA2 power amplifier (TX output) selection.
PA_EN{2:1] PA1 PA2
00 OFF OFF
01 ON OFF (Default)
10 OFF ON
11 OFF OFF
2 PA_EN[2]: AUXPA, auxiliary (RF loopack) PA power down.
  • 0 – Powered up. (Default)
  • 1 – Powered down.
1-0 Not used.
Default: 00001011
0x45 7-3 VGA2GAIN[4:0]: TXVGA2 gain control, log-linear control. LSB=1dB, encoded as shown below.
Code Gain [dB]
00000 0 (Default)
00001 1
11001 25 ...
11111 25
2-0 ENVD[2:0]: Controls envelop/peak detector analogue MUX.
  • ENVD[2]: Selects the signal for AC coupling, MUX provides:
    • 0 – Reference DC generated inside the selected detector. (Default)
    • 1 – Average of the selected detector output.
  • ENVD[1:0]: Detector select, MUX provides
    • 00 – AUXPA envelop detector output (Default)
    • 01 – AUXPA peak detector output.
    • 10 – PA1 envelop detector output.
    • 11 – PA2 envelop detector output.
Default: 00000000
0x46 7-4 PKDBW[3:0]: Controls the bandwidth of the envelop and peak detectors.
  • 0000 – Minimum bandwidth, envelop ~1MHz, peak 30kHz. (Default)
  • 1111 – Maximum bandwidth, envelop ~15MHz, peak ~300KHz.
3-2 LOOPBBEN[1:0]: Base band loopback switches control.
  • 00 – Switch open. (Default)
  • 11 – Switch closed.
1 FST_PKDET: Shorts the resistor in the envelop/peak detector to speed up charging for faster response. After the initial charge up, it should be disabled to achieve a LPF function.
  • 0 – Switch open, LPF function in effect. (Default)
  • 1 – Resistor shorted (no LPF function).
0 FST_TXHFBIAS: Bias stage of high frequency TX part has large resistors to filter the noise. However, they create large settling time. This switch can be used to short those resistors during the initialization and then it may be needed to open it to filter the noise, in case the noise is too high.
  • 0 – Switch open (noise filtering functional). (Default)
  • 1 – Resistors shorted (short settling - no noise filtering).
Default: 00000000
0x47 7-4 ICT_TXLOBUF[3:0]: Controls the bias current of the LO buffer. Higher current will increase the linearity. LSB=5/6mA.
  • 0000 – Minimum current.
  • 0110 – TXMIX takes 5mA for buffer. (Default)
  • 1111 – Maximum current.
3-0 VBCAS_TXDRV[3:0]: The linearity of PAs depends on the bias at the base of the cascode NPNs in the PA cells. Increasing the VBCAS will lower the base of the cascode NPN.
  • 0000 – Maximum base voltage. (Default)
  • 1111 – Minimum base voltage.
Default: 01100000
0x48 7-5 Not used.
4-0 ICT_TXMIX[4:0]: Controls the bias current of the mixer. Higher current will increase the linearity. LSB=1mA.
  • 00000 – 0mA.
  • 01100 – TXMIX takes 12mA for each cell. (Default)
  • 11111 – 31mA.
Default: 00001100
0x49 7-5 Not used.
4-0 ICT_TXDRV[4:0]: Controls the bias current of the PAs. Higher current will increase the linearity. LSB=1mA.
  • 00000 – 0mA.
  • 01100 – PAs take 12mA for each cell. (Default)
  • 11111 – 31mA.
Default: 00001100

TX RF Modules Configuration (Test Mode)

Address (7 bits) Bits Description
0x4A 7-5 Not used.
4 PW_VGA1_I: VGA1, I channel power control.
  • 0 – Powered down.
  • 1 – Powered up. (Default)
3 PW_VGA1_Q: VGA1, Q channel power control.
  • 0 – Powered down.
  • 1 – Powered up. (Default)
2 PD_TXDRV: Power down for PAs and AUXPA.
  • 0 – PA1, PA2 and AUXPA can be separately controlled. (Default)
  • 1 – PA1, PA2 and AUXPA all disabled
1 PD_TXLOBUF: Power down for TXLOBUF.
  • 0 – Powered up. (Default)
  • 1 – Powered down.
0 PD_TXMIX: Power down for TXMIX.
  • 0 – Powered up. (Default)
  • 1 – Powered down.
Default: 00011000
0x4B 7-0 VGA1GAINT[7:0]: TXVGA1 gain control, raw access. LSB=1dB, encoded as shown below.
Code Gain [dB]
00000 -35
00001 -34
10101 -14 (Default)
11110 -5
11111 -4
Default: 01010000
0x4C 7-0 G_TXVGA2[8:1]: Controls the gain of PA1, PA2 and AUXPA, raw access.
  • For PA1, PA2: .
  • For AUXPA: Only 4 LSBs are used, max gain ~22dB.
Default: 00000000, 0dB gain.
0x4D 7 PD_PKDET: Power down for envelop/peak detectors.
  • 0 – Powered up. (Default)
  • 1 – Powered down.
6-0 SPARE0[6:0]: Spare configuration register.
Default: 00000000
0x4F 7-0 SPARE1[7:0]: Spare configuration register.
Default: 00000000

RX VGA2 Configuration (User Mode)

Address (7 bits) Bits Description
0x60 7-6 Not used.
5-0 DC_REGVAL[5:0]: Value from DC Calibration module selected by DC_ADDR.
Read Only.
0x61 7-5 Not used.
4-2 DC_LOCK[2:0]: Lock pattern register.
  • Locked when register value is not "000" nor "111".
1 DC_CLBR_DONE : indicates calibration status.
  • 1 – Calibration in progress.
  • 0 – Calibration is done.
0 DC_UD: Value from DC module comparator, selected by DC_ADDR
  • 1 – Count Up.
  • 0 – Count Down.
Read only.
0x62 7-6 Not used
5-0 DC_CNTVAL[5:0] : Value to load into selected (by DC_ADDR) DC calibration module.
Default: 00011111
0x63 7-6 Not used.
5 DC_START_CLBR: Start calibration command of the module, selected by DC_ADDR.
  • 1 – Start Calibration.
  • 0 – Deactivate Start Calibration command. (Default)
4 DC_LOAD: Load value from DC_CNTVAL to module, selected by DC_ADDR.
  • 1 – Load Value.
  • 0 – Deactivate Load Value command. (Default)
3 DC_SRESET: resets all DC Calibration modules.
  • 1 – Reset inactive. (Default)
  • 0 – Reset active.
2-0 DC_ADDR[2:0]: Active calibration module address.
  • 000 – DC reference module.
  • 001 – First gain stage (VGA2A), I channel.
  • 010 – First gain stage (VGA2A), Q channel.
  • 011 – Second gain stage (VGA2B), I channel.
  • 100 – Second gain stage (VGA2B), Q channel.
  • 101-111 – Not used.
Default: 00001000
0x64 7-6 Not used.
5-2 VCM[3:0]: RXVGA2 output common mode voltage control. VCM[3] – sign, VCM[2:0] – magnitude, LSB=40mV.
Code Voltage [V]
0000 1.18
0001 1.14
0010 1.10
0011 1.06
0100 1.02
0101 0.98
0110 0.94
0111 0.90 (Default)
1000 0.62
1001 0.66
1010 0.70
1011 0.74
1100 0.78
1101 0.82
1110 0.86
1 EN :RXVGA2 modules enable.
  • 0 – RXVGA2 modules powered down.
  • 1 – RXVGA2 modules enabled. (Default)
0 DECODE:
  • 0 – Decode control signals. (Default)
  • 1 – Use control signals from test mode registers.
Default: 00011110
0x65 7-5 Not used.
4-0 VGA2GAIN[4:0]: RXVGA2 gain control. LSB=3dB, encoded as shown below.
Code Gain [dB]
00000 0
00001 3 (Default)
01001 27
01010 30
10100 60

Not recommended to be used above 30dB.

Default: 00000001

RX VGA2 Configuration (Test Mode)

Address (7 bits) Bits Description
0x66 PD[9:0]: Power down different modules.
7-6 Not used.
5 PD[9] - DC current regulator.
  • 1 – Powered down.
  • 0 – Powered up. (Default)
4 PD[8] - DC calibration DAC for VGA2B.
  • 1 – Powered down.
  • 0 – Powered up. (Default)
3 Not used.
2 PD[6] - DC calibration DAC for VGA2A.
  • 1 – Powered down.
  • 0 – Powered up. (Default)
1 Not used.
0 PD[4] - Band gap.
  • 1 – Powered down.
  • 0 – Powered up. (Default)
Default: 00000000
0x67 7-4 Not used.
3 PD[3] – Output buffer in both RXVGAs.
  • 1 – Powered down.
  • 0 – Powered up. (Default)
2 PD[2] - RXVGA2B.
  • 1 – Powered down.
  • 0 – Powered up. (Default)
1 PD[1] - RXVGA2A.
  • 1 – Powered down.
  • 0 – Powered up. (Default)
0 PD[0] - Current reference.
  • 1 – Powered down.
  • 0 – Powered up. (Default)
Default: 00000000
0x68 7-4 VGA2GAINB: Controls the gain of second VGA2 stage (VGA2B). LSB=3dB, encoded as shown below.
Code Gain [dB]
0000 0 (Default)
0001 3
1001 27
1010 30
3-0 VGA2GAINA: Controls the gain of first VGA2 stage (VGA2A). LSB=3dB, encoded as shown below.
Code Gain [dB]
0000 0
0001 3 (Default)
1001 27
1010 30
Default: 00000001
0x6E 7 PD[7] - DC calibration comparator for VGA2B.
  • 1 – Powered down.
  • 0 – Powered up. (Default)
6 PD[6] - DC calibration comparator for VGA2A.
  • 1 – Powered down.
  • 0 – Powered up. (Default)
5-0 SPARE0[5:0]: Spare configuration register.
Default: 00000000
0x6F 7-0 SPARE1[7:0]: Spare configuration register.
Default: 00000000

RX FE Modules Configuration (User Mode)

Address (7 bits) Bits Description
0x70 7-2 Not used.
1 DECODE.
  • 0 – Decode control signals. (Default)
  • 1 – Use control signals from test mode registers.
0 EN: RXFE modules enable.
  • 0 – Top modules powered down
  • 1 – Top modules enabled (Default)
Default: 00000001
0x71 7 IN1SEL_MIX_RXFE: Selects the input to the mixer.
  • 1 – Input 1 is selected, shorted on-chip to LNA internal output. (Default)
  • 0 – Input 2 is selected, connected to pads.
6-0 DCOFF_I_RXFE[6:0]: DC offset cancellation, I channel.
  • Code is Sign(<6>)-Magnitude(<5:0>), signed magnitude format.
  • 0000000 – (Default)
Default: 10000000
0x72 7 INLOAD_LNA_RXFE: To select the internal load for the LNA.
  • 1 – Internal load is active. (Default)
  • 0 – Internal node is disabled.
6-0 DCOFF_Q_RXFE[6:0]: DC offset cancellation, Q channel.
  • Code is Sign(<6>)-Magnitude(<5:0>), signed magnitude format.
  • 0000000 – (Default)
Default: 10000000
0x73 7 XLOAD_LNA_RXFE: To select the externa load for the LNA.
  • 1 – External load is active.
  • 0 – External node is disabled. (Default)
6-0 IP2TRIM_I_RXFE[6:0]: IP2 cancellation, I channel.
  • Code is Sign(<6>)-Magnitude(<5:0>), signed magnitude format.
  • 0000000 – (Default)
Default: 00000000
0x75 7-6 G_LNA_RXFE[1:0]: LNA gain mode control.
  • 11 – Max gain (all LNAs). (Default)
  • 10 – Mid gain (all LNAs).
  • 01 – LNA bypassed (LNA1 and LNA2).
  • 00 – Max gain (LNA3).
5-4 LNASEL_RXFE[1:0]: Selects the active LNA.
  • 00 – All LNAs disabled.
  • 01 – LNA1 active. (Default)
  • 10 – LNA2 active.
  • 11 – LNA3 active.
3-0 CBE_LNA_RXFE[3:0]: Controls the capacitance parallel to the BE of the input NPN transistors. To be used at lower frequencies for easier matching. For LNA1 and LNA2 only.
  • 0000 – (Default)
Default: 11010000
0x76 7 Not used.
6-0 RFB_TIA_RXFE[6:0]: Feedback resistor control of the TIA (RXVGA1) to set the mixer gain.
  • If = 120 --> mixer gain = 30dB (Default)
  • If = 102 --> mixer gain = 19dB
  • If = 2 --> mixer gain = 5dB
Default: 01111000
0x77 7 Not used.
6-0 CFB_TIA_RXFE[6:0]: Feedback capacitor for the TIA (RXVGA1) to limit the BW.
  • If = 0, min cap --> BW~45MHz for gain of 30dB. (Default)
  • If = 19 --> BW=2.5MHz for MixGain=30dB and at TT.

This cap is supposed to be set according to the RC time constant to have almost constant BW over the corners for optimum CDMA performance. Software will control it using the information from the LPF calibration circuit.

Default: 00000000
0x78 7-6 Not used.
5-0 RDLEXT_LNA_RXFE[5:0]: Controls the on-chip LNA load resistor for the external load mode of the LNA. In practice, this will be set to high value, the output will be ac coupled, and the actual load is defined on PCB.
  • 011100 – (Default)
Default: 00011100
0x79 7-6 Not used.
5-0 RDLINT_LNA_RXFE[5:0]: Controls the on-chip LNA load resistor for the internal load mode of the LNA, LNA1 and LNA2.
  • 011100 – (Default)
Default: 00011100
0x7A 7-4 ICT_MIX_RXFE[3:0]: Control for tweaking the bias current for mixer.
  • 0000 - 0 bias current.
  • 0111 - nominal bias current. (Default)
  • 1111 - 2.1x nominal bias current.
3-0 ICT_LNA_RXFE[3:0]: Control for tweaking the bias current for LNA.
  • 0000 - 0 bias current.
  • 0111 - nominal bias current. (Default)
  • 1111 - 2.1x nominal bias current.
Default: 01110111
0x7B 7-4 ICT_TIA_RXFE[3:0]: Control for tweaking the bias current for TIA (RXVGA1).
  • 0000 - 0 bias current.
  • 0111 - nominal bias current. (Default)
  • 1111 - 2.1x nominal bias current.
3-0 ICT_MXLOB_RXFE[3:0]: Control for tweaking the bias current for mixer LO buffer.
  • 0000 - 0 bias current.
  • 0111 - nominal bias current. (Default)
  • 1111 - 2.1x nominal bias current.
Default: 01110111
0x7C 7 Not used.
6-3 LOBN_MIX_RXFE[3:0]: Tweak for the LO bias of the mixer for optimum linearity.
  • 0000 – Minimum bias voltage.
  • 0011 – (Default)
  • 1111 – Maximum bias voltage.
2 RINEN_MIX_RXFE: Termination resistor on external mixer input enable.
  • 1 – Active.
  • 0 – Inactive. (Default)
1-0 G_FINE_LNA3_RXFE[1:0]: LNA3 fine gain adjustment.
  • 00 – +0 dB (Default)
  • 01 – +1 dB
  • 10 – +2 dB
  • 11 – +3 dB
Default: 00011000

RX FE Modules Configuration (Test Mode)

Address (7 bits) Bits Description
0x7D 7-4 Not used.
3 PD_TIA_RXFE: TIA (RXVGA1) power down.
  • 0 – Block active. (Default)
  • 1 – Block inactive.
2 PD_MXLOB_RXFE: Mixer LO buffer power down.
  • 0 – Block active. (Default)
  • 1 – Block inactive.
1 PD_MIX_RXFE: Mixer power down.
  • 0 – Block active. (Default)
  • 1 – Block inactive.
0 PD_LNA_RXFE: LNA power down.
  • 0 – Block active. (Default)
  • 1 – Block inactive.
Default: 00000000
0x7E 7-0 SPARE0[7:0]
Default: 00000000
0x7F 7-0 SPARE1[7:0]
Default: 00000000

Control Block Diagrams

SPI Read/Write Pseudocode

//----------------------------------------------------------------------------
// Write command, SPI module address, register address
// Read data
//----------------------------------------------------------------------------
void SPI_Read(BYTE COMMAND)
{
	BYTE DATA;	//We will read data there
	
	//Write Command and Address (MSB First)
//First 1 bit (MSB)  = Command
//Next 3 bits  = SPI memory block address
//Next 4 (LSBs) bits = Register Address
	for(int i=7; i>=0; i--)
	{		
		if(i’th bit in COMMAND is ‘1’)
		{
			Set Data Output line to ‘1’;
		}
		else
		{
			Set Data Output line to ‘0’;
		};
		Apply Rising and Falling CLK signal edges to CLK line;
	};

	//Read Data (MSB First)
	//Note: At this point we have data MSB valid from the chip.
	for(int i=7; i>=0; i--)
	{
		if(there is ‘1’ at the Data Input Line)
		{
			Set i’th bit in DATA ‘1’;
		}
		else
		{
			Set i’th bit in DATA ‘0’;
};
		Apply Rising and Falling CLK signal edges to CLK line;
	};
};

//----------------------------------------------------------------------------
// Write data to the chip:
// First byte: Command, SPI module address, register address
// Second byte: Data
//----------------------------------------------------------------------------
void SPI_Write(BYTE COMMAND, BYTE DATA)
{
	//Write Command, Address
	for(int i=7; i>=0; i--)
	{		
		if(i’th bit in COMMAND is ‘1’)
		{
			Set Data Output line to ‘1’;
		}
		else
		{
			Set Data Output line to ‘0’;
		};
		Apply Rising and Falling CLK signal edges to CLK line;
	};

	//Write Data
	for(int i=7; i>=0; i--)
	{		
		if(i’th bit in DATA is ‘1’)
		{
			Set Data Output line to ‘1’;
		}
		else
		{
			Set Data Output line to ‘0’;
		};
		Apply Rising and Falling CLK signal edges to CLK line;
	};
};

Loopback and Bypass Modes

LMS6002D Loopback and Test Options
LMS6002D Loopback and Test Options

Envelop and Pick Detector Multiplexer

LMS6002D Envelop/Pick Detector Analogue MUX
LMS6002D Envelop/Pick Detector Analogue MUX

TX/RX PLL

The frequency setting for both TX and RX PLLs is the same as described here. TX PLL SPI registers are at x001xxxx and TX PLL registers are at x010xxxx.

To configure the PLL there are a number of variables which need to be set.

  • Integer and fractional part of the divider.
  • FRANGE value.
  • VCO CAP, charge pump current (Icp) and charge pump offset current (Ioff).

This assumes the given loop filter value with a loop BW of 100kHz is used.

FREQSEL

To simplify the TX/RX PLL register setup the FRANGE and SELVCO register are combined to FREQSEL register. The frequency range and FREQSEL[5:0] value table is reproduced below.

FREQSEL[5:0]
Freuency Range (GHz) Value
0.2325 0.285625 100111
0.285625 0.336875 101111
0.336875 0.405 110111
0.405 0.465 111111
0.465 0.57125 100110
0.57125 0.67375 101110
0.67375 0.81 110110
0.81 0.93 111110
0.93 1.1425 100101
1.1425 1.3475 101101
1.3475 1.62 110101
1.62 1.86 111101
1.86 2.285 100100
2.285 2.695 101100
2.695 3.24 110100
3.24 3.72 111100

For example, UMTS Band I centre frequency 2140MHz is in the range 1.86 to 2.285GHz, hence FREQSEL = 100100 (0x24).

Integer and Fractional Part of the Divider

For wanted LO frequency and given PLL reference clock frequency , calculate calculate integer and fractional part of the divider as below.

First, find temporary variable from the 3 least significant bits of the value:

Use x to calculate and :

and store the values in / registers at address 0x10-0x13 for TXPLL and 0x20-0x23 for RX PLL.

For example is band 1 centre frequency of 2140MHz, and = 30.72MHz:

VCO Capacitor, Icp and Ioff Selection

For the PLL loop filter implemented on the evaluation board, loop bandwidth of 100kHz and optimum PLL phase noise performance, the following charge pump current setup is recommended.

  • Charge pump current Icp=1200uA (default).
  • Charge pump current offset up Ioff up = 30uA.
  • Charge pump current offset down Ioff down = 0uA (default).

Regarding VCOCAP selection, a flexible algorithm based on monitoring on chip Vtune comparators state is developed as described below.

LMS6002 VCO Capacitance Selection
LMS6002 VCO Capacitance Selection

Typical measured Vtune variation with the VCOCAP codes for the two target LO frequencies, 1.95GHz and 2.14GHz. Obviously, Vtune is changing from 2.9V down to 0V. However, PLL lock is guaranteed only when Vtune is in the range 0.5V-2.5V. Also, for the best phase noise performance, Vtune should be kept around the middle of the range i.e. 1.5V.

There are two on chip Vtune comparators per PLL as shown in PLL Control. Their threshold voltages are set to Vth Low=0.5V and Vth High=2.5V. The state of the comparators can be obtained by powering them up (register 0x1B for TXPLL or 0x2B for RXPLL, bit 3) and reading the register 0x1A for TXPPLL or 0x2A for RXPLL, bits 7-6. True table is given below.

VTUNE H VTUNE L Status
0 0 OK, Vtune in range.
1 0 Vtune is high (> 2.5V), PLL lock not guaranteed.
0 1 Vtune is Low (< 0.5V), PLL lock not guaranteed.
1 1 Not possible, check SPI connections.

These can be used to choose VCOCAP code. All we need to find is the code CMIN when comparators change the state from “10” to “00” and the code CMAX when the comparators change the state from “00” to “01”. Optimum VCOCAP code is then the middle one between CMIN and CMAX. For LO=2.4GHz, this is illustrated in VCO Capacitor, Icp and Ioff Selection. In this case, optimum code is around 41.

The algorithm is summarised as below.

  1. Select correct FREQSEL.
  2. Set target LO frequency (NINT, NFRAC) as explained in Integer and Fractional Part of the Divider
  3. Sweep VCOCAP codes from 0-63. Monitor the state of Vtune comparators.
    1. Record the code CMIN when Vtune comparators state changes from "10" to "00" (PLL enters 'in range' state).
    2. Record the code CMAX when Vtune comparators state changes from "00" to "01" (PLL leaves 'in range' state).
    3. Select the middle code between CMIN and CMAX ( C=(CMIN+CMAX)/2 ).

Note that faster search algorithm (replacement for step 3 above) can be implemented as shown in VCO and VCOCAP Code Selection Algorithm.

Once the PLL is set, Vtune comparators can also be used as lock (in range) indication.

PLL Control

LMS6002D PLL Control
LMS6002D PLL Control

TX/RF LPF

LMS6002D TX/RX LPF Control
LMS6002D TX/RX LPF Control

TX RF

LMS6002D TX RF Control
LMS6002D TX RF Control

RXVGA2

LMS6002D RXVGA2 Control
LMS6002D RXVGA2 Control

RX FE

LMS6002D RX FE Control
LMS6002D RX FE Control

Calibration Flow Charts

General DC Calibration Procedure

LMS6002D General DC Calibration Flow Chart
LMS6002D General DC Calibration Flow Chart

DC Offset Calibration of LPF Tuning Module

LMS6002D DC Offset Calibration of LPF Tuning Module Flow Chart
LMS6002D DC Offset Calibration of LPF Tuning Module Flow Chart

TX/RX LPF DC Offset Calibration

LMS6002D TX/RX LPF DC Offset Calibration Flow Chart
LMS6002D TX/RX LPF DC Offset Calibration Flow Chart

RXVGA2 DC Offset Calibration

LMS6002D RXVGA2 DC Offset Calibration Flow Chart
LMS6002D RXVGA2 DC Offset Calibration Flow Chart

LPF Bandwidth Tuning

LMS6002D LPF Bandwidth Tuning Flow Chart
LMS6002D LPF Bandwidth Tuning Flow Chart

VCO and VCOCAP Code Selection Algorithm

General Procedure

LMS6002D VCO and VCOCAP Code Selection Algorithm, General Procedure Flow Chart
LMS6002D VCO and VCOCAP Code Selection Algorithm, General Procedure Flow Chart

VCO Selection

LMS6002D VCO Code Selection Algorithm Flow Chart
LMS6002D VCO Code Selection Algorithm Flow Chart

VCOCAP Selection

LMS6002D VCOCAP Code Selection Algorithm Flow Chart
LMS6002D VCOCAP Code Selection Algorithm Flow Chart

Auto Calibration Summary

The following is recommended auto calibration sequence.

  1. DC offset cancellation of the LPF tuning module.
  2. LPF bandwidth tuning.
  3. DC offset cancellation of the TXLPF.
  4. DC offset cancellation of the RXLPF.
  5. DC offset cancellation of the RXVGA2.

Please note, while executing DC calibration procedures no TX/RX inputs should be applied.

LMS6002D has on-chip DACs for TX LO leakage calibration. Those DACs have been designed to provide around -50/-60dBc LO leakage cancellation.

Correction and Measurement Functions Implemented in BB

Applying IQ Gain Offset to Baseband Signals

Software in baseband initially applies course gain variation on the I or Q channel and measures the loopbacked signal via the LMS6002D receiver to measure the optimum value. The example block for gain correction is shown below.

LMS6002D Gain Correction Block Diagram
LMS6002D Gain Correction Block Diagram

This block implements the following equation:

and are programmable correction factors which are altered by the BB modem to minimise unwanted side band component.

Applying IQ Phase Band Offset Baseband Signals

The baseband S/W applies a course phase multiplier on the I or Q channel and measures the loopbacked signal via the LMS6002D receiver to measure the optimum value. The process is then repeated using a finer control step to ascertain the optimum phase and gain offset value to be applied. The example block for gain correction shown below.

LMS6002D Phase Correction Block Diagram
LMS6002D Phase Correction Block Diagram

IQ phase correction is in fact equivalent to vector rotation. If quadrature phase error is , then I and Q vectors are both rotated by but in opposite directions hence IQ outputs of the corrector are 90° phase shifted. IQ phase correction equations are given below:

The value of is used as programmable correction parameter. BB modem should alter this value to minimize unwanted side band component.

Correcting RX I and Q DC Levels

Software in the receiver baseband is required to calibrate the DC level on the I and Q channel received. The process of applying DC level adjustment to the I & Q channel is an optional requirement required for fine tuning purposes only. The methodology of correcting the DC levels is shown in the diagram below.

LMS6002D RX I and Q DC Level Correction Block Diagram
LMS6002D RX I and Q DC Level Correction Block Diagram

The averaging (COMB) filter calculates the DC of the corrector input and that DC is subtracted to cancel it. The loop is running all the time so any change of the RX DC due to the signal level change, RX gain change or temperature will be tracked and cancelled automatically. The loop only programmable parameter is DCAVG which defines averaging window size.